
Virtual Laboratories for Control
Education: a Combined Methodology*

CEÂ SAR FERNAÂ NDEZ, MARIÂA ASUNCIOÂ N VICENTE and LUIS MIGUEL JIMEÂ NEZ
Universidad Miguel HernaÂndez. Systems Engineering and Automation Division,University Miguel
Hernandez,, Elche,Spain. E-mail: c.fernandez@umh.es

A methodology for control education is presented, focused in student motivation and making use of
a simulation environment. The goal is to increase the number of practice sessions, making them
attractive to the student and avoiding costly laboratory equipment. As a difference to other
approaches like virtual laboratories, the proposed methodology is based on a combination of
computer sessions and laboratory sessions, which should be complementary. The main idea is to
simulate some interesting, well chosen real system in a preliminary computer session; and then
performing a practical experiment with a simple low-cost laboratory equipment working under the
same physical principles. This methodology reduces costs, multiplies the number of different
experiments, and allows the student to manipulate and control real physical systems. The
MATLAB environment is used for the development of the simulation programs. The structure
followed allows an easy development of new programs, by keeping independent the user interface,
the process simulation and the graphical representation modules. Two examples of simulation
programs (linear and nonlinear systems) are given, and full source code is available for both of
them. The methodology is being used at present at the Industrial Systems Engineering Department
of the Miguel Hernandez University for two introductory subjects of control theory.

INTRODUCTION

SUBJECTS RELATED to systems and control
theory in engineering degrees include strong math-
ematical foundations and student motivation is very
difficult, particularly considering that the students
have chosen a technical degree [1, 2]. This problem
can be immediately solved by programming a high
number of practical sessions, so that the student can
apply the theoretical foundations to physical
systems. This solution is very costly and usually
unaffordable, particularly in control education,
where physical equipments are very expensive
(process control scale models, robots, etc.).

Different approaches have been proposed to
solve such problems, among them virtual labora-
tories [3] and remote access to laboratory equip-
ment through the Internet [4, 5], but new problems
arise. Virtual laboratories are mere simulations,
and the student wonders whether the control
schemes that control a virtual device would be
applicable to actually controlling a physical
device. Besides, virtual practices may be consid-
ered by the student as a sort of computer-aided
theoretical session, and not as practices. On the
other hand, remote access to laboratory equipment
also presents problems: students cannot work
simultaneously and not all the laboratory equip-
ments can be remote controlled.

In order to avoid these problems, a two-step
methodology is proposed: first, an interesting,
well-chosen real system is simulated in a computer

session, and then a practical experiment is carried
out with a simple low-cost laboratory equipment.
This methodology reduces costs, multiplies the
number of different experiments, and allows the
student to manipulate and perform the closed loop
control of real physical systems.

The system to be simulated has to be chosen
specifically according to the equipment available at
the laboratory. The goal is to find a real-life
system, complex and interesting but based on the
same physical principles that the simple, low-cost
laboratory equipment. In this way, the student can
relate the behaviour of the real-life simulated
system with that of the laboratory device, even if
this device is extremely simple. Both practice
sessions benefit from each other: the computer
session by itself is not enough as there is a lack
of interaction with a real device; and the labora-
tory session by itself is not enough as the devices
are usually too simple, and it is hard for the
student to relate the work performed in the labora-
tory with a real-life control problem.

Taking into account the drawbacks of previous
approaches, some aspectsÐmainly regarding the
simulation environmentÐhave been considered
relevant in order to be able to successfully apply
the proposed methodology:

. The simulation should allow to be run both at
the university computer rooms and from the
student's home computer.

. The student should not need a wideband con-
nection and, more important, the student should
not need to be connected during all the simula-
tion experiments that can take a very long time.* Accepted 26 July 2005.

1059

Int. J. Engng Ed. Vol. 21, No. 6, pp. 1059±1067, 2005 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2005 TEMPUS Publications.

. A graphical animation of the results is required:
simulations that represent the results by simple
plots are not enough to motivate the students.
Moreover, the animation should run in real-time
(1 s of animation should equal 1 s of system
behaviour).

. Docents may be able to develop new simulation
environments easily in order to create environ-
ments suited to the equipment available at their
laboratories.

In this paper, a generic structure for the develop-
ment of simulation programs covering the previous
aspects is presented. The process of creating new
programs following this structure is fast and easy,
and some examples are provided. The Matlab
environment [6] has been chosen due to its wide-
spread use in universities, particularly in subjects
related to control theory, where textbooks usually
include MATLAB examples [7, 8]. Anyway, other
similar tools could be used instead.

DESCRIPTION OF THE PLANT

The goal of the student in the proposed simula-
tion sessions is to tune or design a control algo-
rithm for a certain system or device (in control
terms, such device is referred to as a plant [9]). It
becomes necessary to describe the behaviour of
such plant, and there are different possibilities,
among them the definition via differential equa-
tions, via transfer functions, or via block diagrams,
where each block may be linear or not (examples of
nonlinear behaviours are very common in plants:
delays, saturations, etc. [9, 10]).

In order to cover such a variety of possible
representations, the following strategy is used:

. When all elements describing the system are
linear, the behaviour should be expressed as a
single transfer function or as a block diagram
whose blocks are transfer functions (it is
straightforward to reduce the diagram using
Matlab functions). Some off-line processing of
the initial representation may be necessary if it is
originally expressed as a series of differential
equations, namely obtaining the equilibrium
point and transforming to the Laplace domain
[9]. Such representation can be directly handled
by Matlab (responses to step inputs or to arbi-
trary inputs can be obtained easily) and no extra
tools are required. This is the simplest case, and
an example is described below.

. When there are nonlinear elements, it is not
possible to obtain a transfer function (linear
approximations can be obtained but they may
not be accurate [9]) and so MATLAB functions
cannot be used directly to obtain the responses.
For these examples a Simulink block diagram
needs to be constructed, in which the different
elements may be expressed in the time domain,
in the Laplace domain or may even use hybrid
representations. In order to present a uniform

user interface for all the simulation environ-
ments, Simulink is invoked in the background
from the MATLAB script. An example simula-
tion program is described later.

SIMULATION PROGRAM STRUCTURE

The proposed structure for the simulation
program is shown in the diagram of Fig. 1. In
brief, the first steps of the simulation program are
devoted to gathering data from the user. For this
purpose, a user interface can be created easily by
using MATLAB GUI functions. The examples
provided in this paper can be used as a guide for
the development of new programs.

The user interface starts asking the student for
the experiment to be performed. In the examples
presented, the experiments include the simulation
of responses to constant inputs, step inputs,
random inputs (noise or disturbances) and to
previously defined input signals. Other experi-
ments can be defined similarly. Once the experi-
ment is selected and, depending on the particular
kind of experiment, some adjustments may be
necessary (step amplitude, disturbance range, etc).

When the experiment to be performed is fully
described, it is the time for the student to propose a
solution for the control problem. This solution
may represent the tuning of a certain predefined
controller (e.g. the selection of proportional, deri-
vative and integral effects for a PID controller) or
the complete design of a controller starting from
scratch (e.g. the definition of the controller transfer
function). Once all these data have been input to
the system, the simulation starts.

As it has been mentioned earlier, depending on
the linearity of the system description, MATLAB
or Simulink tools are used for the simulation. The
behaviour of the system (plant + controller) is
simulated off-line during a certain adjustable
amount of time, which may vary from seconds to
minutes. (As the animation of the results will run
in real-time, longer simulations are not consid-
ered.) In the examples shown in this paper, the
off-line processing takes less than 0.1 s for a 30-s
system simulation in a standard PC; however,
more complex systems may increase this process-
ing time.

When the simulation results have been obtained,
the real-time animation of results starts. Decou-
pling the simulation and representation steps is a
key factor for the easy development of simulation
programs. The graphical representation of results
is performed via MATLAB graphic functions, and
real-time representations (1 s of representation
equals 1 s of system behaviour) can be easily
accomplished by the use of MATLAB clock func-
tions. The listing below shows the representation
algorithm in pseudo-code (it can be easily imple-
mented using any programming language) and the
source code available with the examples presented
in this paper shows a full Matlab implementation.

C. FernaÂndez et al.1060

SimulationTime=ReadTime()
whileSimulationTime<TotalTime
InputSignal=ReadInput(SimulationTime)
OutputSignal=ReadOutput(SimulationTime)
AnimateDrawing(InputSignal, Output-
Signal)

SimulationTime=ReadTime()

In the pseudo-code shown, ReadTime() is
supposed to be a function capable of accessing

the system clock and measuring the time elapsed
since the beginning of the animation; and Anima-
teDrawing() is supposed to be the function in
charge of updating the display with a new graphi-
cal representation of results.

The last step in the structure of the simulation
program is the storage of results. All input and
output signals are stored, thus allowing the student

Fig. 1. Proposed structure for simulation programs.

Virtual Laboratories for Control Education: a Combined Methodology 1061

to analyse the results of the simulation after the
graphical animation has ended. In the examples
provided, the results are stored as MATLAB
variables, so the students can easily plot or process
them.

LINEAR EXAMPLE: MAGNETIC
LEVITATION TRAIN

The first example presented deals with the closed
loop control of magnetic levitation systems. It was
decided to build a simulation environment to make
the magnetic levitation practice more attractive to
the students. The equipment available at the lab is
a low-cost device from Extra Dimension Technol-
ogies [11], which is shown in Fig. 2.

The magnetic levitation practice should be inter-
esting for control students, as the system is inher-
ently unstable (it is based on magnetic attraction,
magnetic repulsion systems are stable [12]) and a
closed loop control system is required in order to
make it work. The purpose of the practice is to
tune a PID controller for this plant. The controller
measures the height and reacts to increasing or
decreasing the current through the electromagnet,
until the reference height is reached. However,
when actually carrying out the laboratory session,
students really don't show a high interest for this
experiment. The reason can be found in the
simplicity of the device.

In order to make the practice more interesting to
the students, a simulation environment has been
developed. This simulation environment shows an
application of the same physical principle:
magnetic levitation trains. Such trains represent
an example of a system the students may find
interesting to work with: they are one of the
latest technologies for transportation. A magnetic
levitation train prototype is shown in Fig. 3.

In order to make the simulated system as similar
as possible to the existing laboratory device, a
magnetic attraction system is simulated. The goal
for the student is to keep the train height stable
(the gap existing between the rail and the train) by

adjusting a PID controller. An accident may occur
if the gap exceeds certain limits: the train may
contact the guideways. Some screenshots of the
simulation environment are shown in Figs 5 and 6.

In this example, the student may perform two
different experiments: the simulation of the step
response of the train (i.e. the reference height or
gap is modified and the train should react to that
input) and the simulation of the noise response of
the system (the noise level is adjustable). The train
behaviour has been simulated via transfer func-
tions as the system can be considered approxi-
mately linear when the gap varies in a narrow
range.

Once the simulation is finished, the results may
be stored as MATLAB variables. Such variables
can be used by the student to perform further
analysis or plots, in order to check the validity of
the control system he/she has designed. As an
example, Fig. 6 shows plots of the output signals
(gap between track and train) for correct vs.
incorrect configurations of the controller in a
step response experiment. Obviously, the second
plot corresponds to an unstable system. More
details concerning this simulation environment
can be found in our previous work [13].

The simulation environment consists of a single
Matlab function, which is available for download
at [14].

To be able to run the simulation, it is only
necessary to download the program or to copy it
from a CD or diskette (the extremely small size of
the programs should be noted: 18 kB in this
example) and execute it on a computer running
MATLAB. The simulation runs locally, so this
methodology makes the simulations available to
all students, even if they don't have wideband
Internet connections at home (even if they don't
have Internet at all).

Fig. 2. Magnetic levitation laboratory device. Fig. 3. Magnetic levitation train MLU002N (Japan).

C. FernaÂndez et al.1062

NONLINEAR EXAMPLE: CAR CRUISE
CONTROL

The second example presented deals with the
closed-loop speed control of a DC motor. It is a
common practice session in control education: a

controller is designed in order to adjust the speed
of a DC electric motor. Concretely, the equipment
available at the lab is one of the most common
devices in most universities: the servomotor model
33-001 from Feedback [15] which can be seen in
Fig. 7.

Fig. 4. Maglev simulation: main screen.

Fig. 5. Maglev simulation: bad adjustment of controller.

Virtual Laboratories for Control Education: a Combined Methodology 1063

As controlling the speed of a DC servomotor is
not a challenging task for the students, it has been
decided to create also a simulation environment
for this device. In this case, and in order to make
the practice more attractive, the simulation does
not consider an electric motor but a combustion
engine: the purpose is to design an algorithm for a
car cruise control, like those available in high-end
cars. Even though the system is quite different, the
basic principle is the sameÐspeed controlÐand
there is an important common problem: both the
electric motor speed control and the car cruise
control present stationary error unless an integral
effect is included in the controller [9]. Thus, the
same principle can be applied to the simulation
and to the practice session with the lab equipment.

The goal for the student is to design a controller
capable of keeping stable the car speed, even if the
slope of the road is not uniform. The controller is
supposed to be continuously measuring the speed
of the car, and should react to differences with the
reference speed increasing or decreasing the fuel

injected to the engine (adjusting the gas pedal of
the car).

A screenshot of the simulation environment is
shown in Fig. 8. It can be seen that both the slope of
the road and the instantaneous speed are animated
during the real-time representation of results.

In this example, the behaviour of the car is
highly nonlinear due to two reasons: first, the
longitudinal component of the weight is related
to the road slope through a sine function; and
second, the resistance due to air friction is
supposed to have a quadratic relationship with
the speed of the car. (Even considering such
nonlinearities, the car behaviour has been simpli-
fied to a high extent, as the purpose of the
simulator is not to obtain accurate experimental
data.) As it has been explained before, the presence
of nonlinearities makes it necessary to simulate the
behaviour of the system via a Simulink block
diagram. Fig. 9 shows the diagram used in this
example.

The student, once the controller has been

Fig. 6. Output plots for correct vs. incorrect configuration of the controller.

Fig. 7. DC servomotor model 33-001 from Feedback.

C. FernaÂndez et al.1064

adjusted, can perform three different experiments
with this simulator:

. Response to a constant slope. This experiment
shows whether the controller works properly
under unchanging road conditions.

. Response to a randomly varying slope. This
experiment shows the behaviour of the system
when the car goes through a previously
unknown road.

. Contest. This experiment is similar to the pre-
vious one but with a different purpose: the
students should obtain the best possible beha-
viour for the car and then compare their results
with those of other students. For this purpose,
the slope does not vary randomly but under a
previously fixed profile, which is the same for all
the students.

Once the experiment is finished, it is possible to
save the results to a file and perform further
analysis, as in the previous example. Particularly,
when the contest experiment is performed, it is
interesting to check the behaviour of the system by
plotting the input (slope) and output (speed)
signals. Such data is represented in Fig. 10.

Considering the contest experiment, a compar-
ison can be made among the results obtained by the
different students, using different metrics. One of
these metrics could be the integral of the absolute
deviations from the reference speed; other metrics
could be related to the maximum absolute value of
the deviations; others may work in a different way
with upper or lower deviations, etc.

For this example (and all nonlinear ones) the
simulation environment consists of two files: a

Fig. 8. Cruise control simulator: main screen.

Fig. 9. Cruise control: Simulink block diagram.

Virtual Laboratories for Control Education: a Combined Methodology 1065

MATLAB script and a Simulink block diagram.
These files are available for download at [16] and
[17].

As in the previous example, it is only necessary
to download both files to perform the simulation
on a computer running MATLAB, and the
program will run locally.

CONCLUSIONS

Student motivation in control engineering
subjects can only be accomplished by increasing
the number of practical sessions, but laboratory
costs become unaffordable. Web-shared equip-
ment or virtual laboratories help in reducing
costs but present serious drawbacks.

A two-step methodology is proposed, perform-
ing a previous simulation session before each
laboratory session, thus increasing student motiva-
tion and fully exploiting the equipment available at
any laboratory.

The structure proposed for the development of
simulation environments is based in MATLAB,
and allows a real-time animated representation of
results without the need for real-time toolboxes.
Apart from that, the requirements (both in terms
of computing power and connection bandwidth)
are kept to a minimum, thus enabling the students
to run the simulation from their homes.

The two examples presented in this paper (linear
and nonlinear simulations) can be used by other
students as a guide to developing new simulation
environments using a similar interface, but
adapted to other laboratory equipment.

Two main benefits are obtained by using the
proposed methodology: first, the simulation
sessions help to increas student motivation, as
control theory is applied to solve interesting real-
life problems; and second, the practice sessions
with laboratory equipment are better understood
by the students as they have worked with similar
(simulated) devices in the previous session.

REFERENCES

1. K. J. AstroÈm, Reflections on control engineering education, Jornadas de AutomaÂtica, IX,1998.
2. R. Puerto, C. Fernandez, Training exercises on engineering courses: a practical application on

digital signal filters, 10th. EAEEIE Conf. Educational Innovations in EIE, 1999.

Fig. 10. Results of the contest experiment.

C. FernaÂndez et al.1066

3. F. A. Candelas, S. T. Puente, F. Torres, F. G. Ortiz and P. Gil, Educational virtual laboratory for
training of robotics, Int. J. Eng. Educ., 19(3), 2003, pp. 363±370.

4. R. Puerto, L. M. JimeÂnez, O. Reinoso and C. FernaÂndez, Laboratorio võÂa Internet para el control
de procesos, Actas de la Conferencia Internacional sobre EducacioÂn, FormacioÂn y Nuevas
TecnologõÂas, 2002.

5. J. M. SebastiaÂn, F. M. SaÂnchez and D. GarcõÂa, Sivanet: A new remote physical scenario for control
self-learning through the Internet, Learning Technology, IEEE Computer Society (2002).

6. www.mathworks.com/
7. N. S. Sise, Control Systems Engineering, Wiley (2003).
8. K. Ogata, Solving Control Engineering Problems with Matlab, Prentice-Hall (1993).
9. K. Ogata, Modern Control Engineering, Prentice-Hall (2001).

10. B. C. Kuo, Automatic Control Systems, Wiley (2003).
11. www.xdtech.com/Business/productsbusiness/productcatalogbusiness/ productpagebusiness/ml.htm
12. http://www.teicontrols.com/notes/SeminarEE155/MaglevVehicles.pdf
13. C. Fernandez, M. A. Vicente and R. Puerto, EnsenÄanza en asignaturas de control apoyada en

equipos experimentales virtuales, VI Congreso de TecnologõÂas Aplicadas a la EnsenÄanza de la
ElectroÂnica, 2004.

14. http://lorca.umh.es/isa/es/asignaturas/tcs/practicas/matlab/train.m
15. http://www.fbk.com
16. http://lorca.umh.es/isa/es/asignaturas/tcs/practicas/matlab/car.m
17. http://lorca.umh.es/isa/es/asignaturas/tcs/practicas/matlab/car_sim.mdl

Cesar Fernandez is head of the Systems Engineering and Automation Division at Miguel
Hernandez University since 2003. He teaches control theory and machine learning subjects
at both industrial engineering and telecommunications engineering degrees, and currently
conducts research on machine learning applied to robotics and autonomous robot grasping.

Maria Asuncion Vicente is Associate Professor at Miguel Hernandez University, Systems
Engineering and Automation Division, since 2000. She teaches linear circuits theory,
instrumentation and sensors and microcontroller programming. Her research interests
are focused on robotics and vision systems. Currently she is working in appearance based
visual object recognition based on ICA features.

Luis Miguel Jimenez is Associate Professor at Miguel Hernandez University, Systems
Engineering and Automation Division, since 1997. He teaches control theory and real-time
computing at both industrial engineering and telecommunications engineering degrees. His
main research interest is machine vision. Currently he is working in 3D computer vision
algorithms.

Virtual Laboratories for Control Education: a Combined Methodology 1067

