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Abstract A learning-based approach to autonomous robot
grasping is presented. Pattern recognition techniques are
used to measure the similarity between a set of
previously stored example grasps and all the possible
candidate grasps for a new object. Two sets of features
are defined in order to characterize grasps: point
attributes describe the surroundings of a contact point;
point-set attributes describe the relationship between the
set of n contact points (assuming an n-fingered robot
gripper is used). In the experiments performed, the
neighbour outperforms  other
approaches like multilayer perceptrons, radial basis

nearest classifier
functions or decision trees, in terms of classification
accuracy, while computational load is not excessive for a
real time application (a grasp is fully synthesized in 0.2
seconds). The results obtained on a synthetic database
show that the proposed system is able to imitate the
grasping behaviour of the user (e.g. the system learns to
grasp a mug by its handle). All the code has been made
available for testing purposes.

Keywords robot learning, grasping, human imitation,
nearest neighbour.
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1. Introduction

Unlike traditional manufacturing applications,
applications of robots require them to grasp different
objects and tools, some of them previously unknown.
Service robotics [1] is one of these new fields of
application, where robots coexist with humans, work in

new

human environments and use tools that have been
designed for humans.

The first task for an automatic grasp synthesis algorithm is
the selection of the best contact points, i.e. those points on
the surface of the object where the robot fingers are to be
placed.  Additionally, problems  like
redundancy (multiple robot configurations can reach the
same contact points) or trajectory selection have to be
addressed, but such aspects are outside of the scope of the
present paper. We will focus on contact point selection.

other robot

Our approach is different to that of most authors, since
we consider grasp synthesis to be a pattern recognition
problem. In our case, such a problem involves a
classification step, where the goal is to classify all possible
grasps as valid or invalid according to their similarity to a
set of training examples, and a selection step, where the
goal is to select, among all valid-classified grasps, the one
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closer to a training example. No other grasp quality
measure is considered but the similarity to training
examples.

Most previous approaches for grasp synthesis can be
roughly divided in two groups: those completely relying
on predefined rules or heuristics and those making
partial use of machine learning algorithms.

In the first group, some approaches try to find grasps
fulfilling different criteria, like force and torque balance
[2][3], force closure [4][5][6], form closure [7][8] or
second-order immobility [9]. Roa [10] proposes an
algorithm capable of determining contact regions
fulfilling force closure, thus allowing for lack of precision
in robot fingers. Goldberg [11] considers deformable parts
and introduces deform closure grasps as those where
positive work is needed to release the part. Other
approaches try to maximize different quality functions:
Cornella [12], Ferrari [13] and Mirtich [14] look for a
grasp capable of resisting the maximum external force or
torque; and Markenskoff [15] tries to minimize the force
required in the robot fingers in order to hold a certain
object. A different strategy is used by Cutkosky [16] and
Pollard [17]; basically, predefined generalised grasps are
adapted to each particular object to be grasped. A
biologically inspired approach can be found in [18],
where grasp synthesis is integrated with the incremental
extraction of 3D
representation of the object allows the system to analyse
in detail those object features more relevant for grasping.
The system searches for possible graspable features,
considering that the object is unknown, while a parallel
search for previously executed grasps is carried out. Such
parallelism resembles that of the dorsal and ventral
streams in human grasping behaviour.

information. A multi-resolution

In the second group, Morales [19] proposes to use a
multilayer perceptron or the nearest neighbour technique
to infer the robustness of a grasp from previous
experiments. Such robustness is used to select the best
grasp among a set of different grasps synthesized using
predefined rules (confluence of the surface normals at the
contact points). The approach presented by Kamon [20] is
based on an association of the contour of each object with
the grasp to be performed. When an already known
object is presented to the system, the previously stored
grasp (specified as a set of parameters related to the
object contour) is performed. When a new object is
presented to the system, the grasp is synthesized
according to some heuristic criteria, and its expected
quality is inferred from the examples using the nearest
neighbour technique. Platt [21] tackles the problem of
grasp adjustment from an initial, approximately correct,
grasp. He proposes different null space controllers which
make use of the information provided by contact sensors
to displace the robot fingers in order to reach a force
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closure configuration. In [22], Ekvall presents an
approach based on the use of hidden Markov models to
detect the kind of grasp being performed by the user in a
teleoperation (where
predefined grasps). Once the kind of grasp has been
detected according to the initial sequence of movements
performed by the user, the system is able to finish the

scenario there are several

task autonomously. A complete setup for robot grasping
through human behaviour observation can be found in
[23], where a humanoid robot is used to mimic human
grasps. Both upper body movements and hand
movements are captured (using computer vision) and
mapped to the robot kinematics. Five different grasp
types can be recognized and mimicked; however, only
previously known objects can be grasped.

Even though learning techniques are sometimes used,
none of the previous approaches is completely learning-
based. All of them rely on predefined grasping rules or
heuristics to synthesize the grasps, machine learning
being added just to improve the behaviour of the system.
We propose a fully learning-based system which tackles
the grasp synthesis problem as a pattern recognition task.

To our knowledge, the only similar approach can be
found in [24], where grasping points for novel objects are
predicted from a database of synthetic examples. Such
examples are 2D renderings obtained from 3D models of
different objects with predefined grasping points. There
are 2500 examples, and the grasping areas are described
by a feature vector of dimension 459 (which includes both
edge and texture information). When a new object has to
be grasped, its image is divided in rectangular patches,
and all the patches with similar features to those of one of
the examples are considered correct grasping points.

2. Grasp description proposed

Grasp description is one of the main keys to success in
learning-based grasp synthesis algorithms. The final goal
is to establish a similarity measure in order to decide
whether a new grasp is similar to the stored grasp
examples or not.

Most previous research in robot grasp synthesis is based
on the definition of quality measures; such quality
measures are used to compare different grasps and to
select the best one. Even though such approaches are not
focused on pattern recognition, we have used their
quality measures as a guideline in selecting the attributes
for the learning-based approach proposed in this paper.
Some of the quality criteria used by previous authors
(partly mentioned in section 1) are:
e Curvature of the object surface in the contact points.
Gripper fingers are preferably placed on planar
surfaces [2].

www.intechweb.org



e TForce and torque balance. The search is directed
towards balanced grasps, capable of cancelling
gravity or inertia forces. Some examples can be
found in [2][3].

e TForce closure or distribution of contact points
capable of resisting arbitrary external forces acting
on the object [4][6].

e Form closure and second-order immobility. Both
quality criteria are related to the immobilization of
the object, provided that the contact points are not
displaced (high stiffness is assumed in the gripper
fingers) [8][9][25].

e Maximum external force/torque resistible in any
direction. There are different variations of such
criteria, depending on how the force applied by the
gripper fingers is limited; a detailed analysis can be
found in [26]. Some grasp synthesis algorithms using
this quality criteria are [12][13][14]. An approach
providing closed-form expressions for the passive
force closure set of grasps can be found in [27].

Some of the above mentioned quality criteria are related
to points (they are measured at a single contact point, e.g.
curvature) while others are related to sets of points (they
depend on the relation between the contact points, e.g.
force/form closure). The approach proposed in this paper
is based on decoupling what we call point attributes and
what we call point-set attributes. First, point attributes are
measured in all the surface points in order to select those
points valid for placing a robot finger on them, according
to the training examples given in demonstration. Then,
only those combinations of valid surface points are tested
using the point-set attributes so as to select those
combinations which are most similar to the training
examples.

Briefly, a set of point attributes is needed, at first, in order
to describe each candidate contact point on the surface of
the object; then a set of point-set attributes is needed in
order to describe each candidate set of n contact points (n
being the number of gripper fingers).

2.1 Point attributes

These are the point attributes that we have selected for

our system:

e Distance from the contact point to the centre of
gravity of the object.

e Local curvature of the surface at the contact point
(convexity).

Distance to the centre of gravity of the object allows the
distinguishing of centred grasps from non-centred ones;
while local curvature or convexity defines the kind of
surface areas where the gripper fingers are best placed,
these surface areas can be flat, convex or concave.

www.intechweb.org

However, this information is clearly not enough for
describing the training grasps performed by the user. For
example, detecting whether the contact points are located
preferably on handles requires additional data. One of the
novelties presented in this paper is a simple, yet effective,
method for describing contact points. The idea is to
describe the shape surrounding a certain point as a set of
convexities measured at different resolutions.

Object contours are sampled at five different resolutions.
At each resolution, the convexity value gives different
information about the shape of the contour in the
surroundings of the contact points. Higher resolutions
offer local information, while lower resolutions offer
global information. The sequence of convexity values
obtained may be representative of a particular shape. This
is exactly what we need in order to measure similarity
between contact points in two different grasps. Fig. 1
shows how convexity varies with resolution for three
different contact points of three different objects. Fig. 2
compares the convexity values obtained for those contact
points, and it becomes clear that such a measure is
representative of the surroundings of the contact point.

Object 1: frying pan

Object 2: wine glass Object 3: man

Figure 1. Multi-resolution convexity for three different contact
points.

Regarding the resolutions chosen, we have decided to use
5 different resolutions, as a compromise between the
amount of information and the complexity of the
descriptor. Object contours are initially sampled so that
there is a Imm distance between two consecutive contact
points (such a resolution can be easily obtained with a
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video camera in a real application). Downsampling is
easily performed just by discarding part of the original
contour points and keeping some of them. In particular,
the subsampling ratios used were 1/5, 1/10, 1/15, 1/20 and
1/30. Such resolutions have been shown to perform
reasonably well with our database. Of course, using
different resolutions (or even a different number of them)
could also lead to good results.

120 T T T —]

—<— 1: frying pan
100 | —=— 2: wine glass 7
—S— 3:man

80

60

40

convexity

resolution

Figure 2. Multi-resolution contact point representation.

With regards to normalization, we have decided not to
normalize the shapes (i.e. not to describe all the contours
with the same number of points, independently of their
size). Normalization discards size information which can be
useful for describing a grasp, since it makes similar shaped
contours look the same even if they have different sizes.

2.2 Point-set attributes

Point-set attributes are more difficult to choose. In our

system, we have decided to define these attributes using

a reference point. Such a reference point is the centre of

gravity of the convex hull defined by all the contact

points. We have considered two measures:

e Distance from the reference point to the centre of
gravity of the object.

e Angle between the line directed to the reference
point and the normal to the object surface at each
contact point.

The distance to the centre of gravity of the object again
allows the distinguishing of the centred grasp from non-

centred ones, as Fig. 3 shows.
dy

A&

Figure 3. Centred vs. non-centred grasps.
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The angular measure is related to the fulfilment of the
force closure condition. When two-fingered grippers are
used, a grasp fulfils force closure when the line joining
both contact points lies within their friction cones [4]. Fig.
4 gives examples of grasps fulfilling or not fulfilling such
a condition. Under such circumstances, the proposed
attribute gives relevant information: as its value
approaches zero, the grasp is more likely to fulfil the
force closure condition.

When a three-fingered gripper is used, similar criteria can
be established [5]: the grasp fulfils the force closure
property if the friction cones of the contact points
intersect each other (and the contact normals do not
belong to the same half-plane). Fig. 5 provides an
example. As the symmetry axis of the friction cones is
collinear with the surface normal, the closer the angle
between the normal and the line directed to the reference
point gets to zero, the more likely it is that the force
closure condition will be fulfilled.

Figure 4. Force closure in two-fingered grasps. Left: non-force
closure; right: force closure.

4

Figure 5. Force closure in three-fingered grasps. Left: non-force
closure; right: force closure.

A similar approach to that of the point attributes has been
adopted for point-set attributes. Instead of measuring the
angles at only one resolution, they are measured at five
different resolutions in order to describe in more detail
the surroundings of the contact points. For reasons of
coherence, the same five resolutions used for point
attributes are also used for point-set attributes.

Arguably, these angular measures will not be related to

force/form closure for low resolutions (since the contour
shape is highly distorted). However, they will still be
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representative of the kind of grasp being performed, so
they may be useful in a pattern recognition scenario.

Let us consider an example. Given a two-fingered gripper
- as with the grippers used in our experiments - a grasp is
defined by a 23 dimensional vector, as Table 1 shows.

Cont. 1 Cont. 2 Ref. pt. | Norm.1 | Norm. 2
COG dist | COG dist | COG dist - -
Conv. R1 | Conv. Ri - Angle Ri | Angle R
Conv. R1 | Conv. Rz - Angle R2 | Angle R»
Conv. Rs | Conv. Rs - Angle Rs | Angle R3
Conv. R4 | Conv. R4 - Angle R« | Angle R4
Conv. Rs | Conv. Rs - Angle Rs | Angle Rs

Table 1. Two-fingered gripper grasp description.

In Table 1, Cont. i refers to the i contact point; Ref. pt.
refers to the reference point; Norm. i refers to the normal
at the " contact point; Conv. Ri refers to the convexity
measured at the i resolution; and Angle Ri refers to the
angle between the line directed from the reference point
to the contact point and the normal at such a point,
measured at the i resolution. Note that columns 1 and 2
contain the 12 point attributes; while columns 3, 4 and 5
contain the 11 point-set attributes.

3. Grasp synthesis algorithm

Our grasp synthesis algorithm can be described in terms
of its off-line processes and its on-line processes.

3.1 Off-line processes

Once a set of grasp training examples has been inputted

by the user, the following off-line processes are run:

1. Point and point-set attributes are extracted for each
example grasp. The resulting 23 dimensional vectors
(if two fingered grippers are used) are stored as
correct grasp examples for the pattern recognition
system.

2. For each example grasp, a random grasp (2 randomly
selected grasping points) is generated, and its point
and point-set attributes are also extracted. The
resulting vectors are stored as incorrect grasp
examples for the pattern recognition system.

3. Using the point attributes of correct and incorrect
(randomly selected) grasps, a first model is created.
Such a model can distinguish correct contact points
from incorrect contact points.

4. Using the point-set attributes of correct and incorrect
(randomly selected) grasps, a second model is
created. Such a model can distinguish correct sets of
contact points from incorrect sets.

5. For each grasp, all the attributes are stored for
further use.

www.intechweb.org

We have decided to include in our grasp example dataset
the same number of correct and incorrect examples, in
order not to obtain biased models. However, we do not
expect the user to input wrong examples (it would not
make sense), so these examples are generated randomly.
There is an extremely low probability of generating a
correct grasp randomly, but it may occur. Thus, the
machine learning algorithms to be used should be able to
cope with a small percentage of incorrectly labelled
training examples.

3.2 On-line processes

Whenever a new grasp must be synthesized, the

following on-line processes are run:

1. The contour of the object to be grasped is extracted (a
good contrast with the background is assumed).

2. The contour is sampled so that there is a Imm
distance between two consecutive contact points (the
same resolution used for the grasp examples).

3. The first model (point attributes) is used to classify all
contour points as either valid or invalid for placing a
gripper finger on them, according to the examples.

4. All possible sets of two valid contact points (if a two-
fingered gripper is used) are analysed in order to
detect which of them could be reachable by the robot
gripper (more details about the algorithm used for
such computation can be found in [28]).

5. The second model is used to classify all sets of two
contact points as either valid or invalid grasps,
according to the examples.

6. Among the correct sets of two contact points, the one
which is most similar to one of the stored examples is
selected as the best grasp for the object. Similarity is
measured using Euclidean distance and considering
all of the attributes (23 attributes for a two-fingered
gripper).

7. Once the contact points have been chosen, a
kinematic redundancy problem may arise, as more
than one robot and gripper configuration may be
able to reach such contact points. Even though this
last step is out of the scope of the present paper, we
propose to use an example-based approach, where
the robot and gripper configuration more similar to
those found in the grasp examples is selected (more
details can be found in [29]).

Fig. 6 shows the on-line processes over an example object
(the resolution has better
visualization): First (upper left corner), all of the valid
contact points are plotted over the object contour; second
(upper right corner), the sets of valid contact points
reachable by the robot gripper are outlined; third (lower
left corner), only valid sets according to the examples are
kept; and fourth (lower right corner), the final grasp is
displayed.

been lowered for a
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Figure 6. On-line processes. Left to right and top to bottom: valid
contact point according to the examples; reachable contact sets;
valid contact sets according to the examples; final grasp.

4. Model creation

Two of the off-line processes of our grasp synthesis
algorithm require the creation of models: the third
process, where point attributes are used to express rules
that allow us to classify contact points; and the fourth
process, where point-set attributes are used to express
rules that allow us to classify sets of contact points. A
comparison of different machine learning algorithms that
could be used to build such models has been carried out.
The following algorithms - or classifiers - have been
tested:

e  MLP: Multilayer perceptron.

¢  RBF: Radial basis functions.

e NN: Nearest neighbour.

e DT: Decision trees, specifically C4.5 algorithm [30].

e NB: Naive Bayes.

e  RL: Rule lists, specifically PART algorithm [31].

Different criteria have been included in the comparison.
First, some quantitative criteria: classification accuracy
(measured by tenfold cross validation); the ratio between
classification accuracy and the number of training
examples used; and computing time, both off-line
(training) and on-line (classification). In order to obtain
these quantitative measures, 200 valid and 200 invalid
grasps were generated using a simulation environment
and two datasets were created: a dataset of point
attributes corresponding to the third off-line process and
a dataset of point-set attributes corresponding to the
fourth off-line process (these datasets have been made
available, in the Weka *.arff format, at [32]). Each
classifier was tuned in order to produce the best possible
results for each dataset. As the goal was to test the
algorithms under conditions as similar as possible to
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those of a real setup, valid grasp examples were
introduced by the user in demonstration, while invalid
grasp examples were randomly selected.

Besides, three qualitative criteria have also been
considered: readability of the results; sensitivity to
modifications in the training parameters; and robustness
to noisy training examples. The ideal algorithm should be
readable (in order to allow for an easy interpretation of
the model by a human); should have a low sensitivity to
training parameters (in order to be easily implemented in
different scenarios and to be reliable); and should be
robust to noisy training examples.

Starting with the quantitative criteria, a previous tuning

of each algorithm with the point attributes dataset led us

to select the following configurations:

e  MLP: 1 hidden layer with 9 neurons, learning rate set
to 0.3, momentum set to 0.2, 500 epochs.

e  RBF: 40 base functions.

e NN: 1 neighbour.

e  DT: pruning confidence level set to 0.30.

e NB: probability density functions estimated as sums
of Gaussians.

e  RL: pruning confidence level set to 0.30.

Using such configurations, the comparative results
obtained are described in Figs. 7 to 10.

98

96

94

92

90

88

86

correctly classified contact points (%)

NN MLP RBF NB DT RL

Figure 7. Cross validation results (point attributes).

Fig. 7 shows the results of a tenfold cross validation
experiment repeated 10 times (average values and
standard deviations are shown). It can be seen that the
best performing algorithm for this application is NN
(average 96.4% correct classification rate) followed by DT
(929%) and RL (92.3%), these two methods giving
approximately the same results. MLP, in fourth place,
also gives good results (90.0%). Finally, RBF and NB do
not seem to be suitable for this application.
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Figure 8. Classification accuracy vs. number of training
examples (point attributes).
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Figure 10. On-line computing time.
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Fig. 8 shows the classification accuracy when the number
of training examples varies from 20 to 380. The results
obtained are similar to those of the cross validation
experiment: NN is the best performing algorithm in
almost all of the range of training examples, while DT, RL
and MLP follow. In addition, this experiment allows us to
conclude that the proposed grasp synthesis algorithm
could work reasonably well with a small number of grasp
examples: classification accuracy is around 80% when
only 40 contact point examples are considered. As each
grasp involves at least two contact points, this means that
only 20 grasp examples are needed; besides, 50% of the
grasp examples are randomly chosen (invalid grasps), so
the user would only have to perform 10 correct grasps in
demonstration mode and the system would have enough
information to start working autonomously.

Concerning off-line computing times (measured on a
standard 2.9GHz, 4GB RAM Intel Core i3 PC running
Windows 7), Fig. 9 shows that the slowest algorithm is
MLP, with a computing time approximately linear on the
number of training examples and reaching 3.4 seconds for
a dataset of 380 examples. The other algorithms are
clearly faster and they are not so dependent on the
number of examples. However, as training is performed
off-line, these differences in computing times are not
relevant for choosing among the candidate algorithms.

On-line or classification computing time is more relevant,
because each time a new object has to be grasped, a huge
number of points have to be classified. The results are
shown by Fig. 10 as the time required to classify 1000
surface points. The fastest methods are MLP, DT and RL.
RBF and NB are clearly slower, but still valid for our
application (in the worst case, it took around 0.5 seconds
to classify 1000 contact points). Finally, NN behaves as
expected, with on-line computing times linear to the
number of training examples. Thus, the feasibility of NN
for our application depends on two factors:

e  First, the number of training examples. According to
Fig. 8, the best performances are obtained with
around 300 training examples, but in a real
application, the user is not expected to input more
than 20 grasps (which gives 80 training examples,
taking into account that every grasp involves two
contact points and that for every correct grasp input
by the user, a randomly selected grasp is added by
the system).

e Second, the number of points to classify. Fig. 10
considers 1000 points, but the number of points will
depend on the resolution chosen. We have decided to
sample the object contour so that there is a Imm
distance between two consecutive points, which will
give around 300 points for a standard object with a
30cm contour.
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Even considering 200 training examples and 300 points,
NN classification would take around 0.15 seconds, which
is clearly acceptable for our application.

The same quantitative criteria, when measured over the

point-set attributes dataset, gave slightly different results.

First, the tuning of the algorithms was modified in order

to obtain the best performances:

e  MLP: 1 hidden layer with 7 neurons, learning rate set
to 0.3, momentum set to 0.2, 500 epochs.

e  RBF: 10 base functions.

¢ NN: 1 neighbour.

e  DT: pruning confidence level set to 0.25.

e NB: probability density functions estimated as sums
of Gaussians.

¢ RL: pruning confidence level set to 0.15.

Using such configurations, the comparative results
obtained are described in Figs. 11 and 12 (off-line and on-
line computing times are omitted as the results obtained
are very similar to those shown for point attributes).

Concerning the tenfold cross validation experiment of
Fig. 11, the results are similar to those obtained using the
point attributes: NN is again the best performing
algorithm (98.6% average), but MLP (98.1%) offers very
similar results, outperforming RL (97.3%) and DT
(96.8%); both of them offering again very similar results.
NB gives slightly lower correct classification rates and,
finally, RBF gives poor results with this dataset.

As Fig. 12 shows, the relative performance of the different
algorithms is kept uniform in almost all of the range of
training examples: NN is the best method followed by
MLP, RL, DT, NB and RBF. However, NB is particularly
well suited for applications where the number of training
examples is very small (100 or below): in that range, NB
offers results similar to those of NN and MLP.

©

©

correctly classified sets (%)

90

NN MLP RBF NB DT RL

Figure 11. Cross validation results (point-set attributes).
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100

95

correctly classified sets (%)
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0 50 100 150 200 250 300 350 400
number of training examples (sets)

Figure 12. Classification accuracy vs. number of training
examples (point-set attributes).

Globally, the percentage of correct classifications is even
higher in this model (point-set attributes) than in the
previous one. With only 40 grasp examples, the correct
classification rate ranges from 92% to 95% (depending on
the classifier used). These results, together with the
results obtained for the previous model, confirm that the
choice of attributes made in section 2 and the multi-
resolution scheme adopted are adequate for representing
the differences between valid and invalid grasps.

Apart from the quantitative tests, a qualitative
comparison has also been performed in order to select the
best classifier for the application. Table 2 shows the
qualitative advantages of each method. As far as
readability by a human is concerned, only DT and RL
offer readable models. Concerning robustness to noisy
training examples, all methods have been considered
robust enough, except for local methods: NN and RBF
(however, NN has performed extremely well with the
datasets used for the experiments, which are inherently
noisy: wrong grasps are randomly selected, so some of
them may actually be correct grasps). Finally, concerning
sensitivity to training parameters, only MLP and RBF
seemed to be highly dependent on the parameterization
(number of neurons in the hidden layer and number of
base functions).

Method Readable Robust Sensitive
NN No No No
MLP No Yes Yes
RBF No No Yes
NB No Yes No
DT Yes Yes No
RL Yes Yes No

Table 2. Qualitative comparison of machine-learning algorithms.

In brief, having a global look at both the quantitative and
qualitative criteria, it must be concluded that the best
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performing method in terms of classification accuracy is
NN. Following in classification accuracy are MLP, DT
and RL (depending on the experiment their relative
performances are different, so there is not a clear winner).

Among these four methods, both NN and MLP lack
readability; and MLP is too sensitive to modifications
during parameter tuning (in particular, choosing the right
hidden layer
So, if we focus on classification

number of neurons in the is not
straightforward).
accuracy, the best method would be NN, but if we also
consider readability and other qualitative aspects, DT and

RL may be more appropriate choices.

Readability could be an important advantage for a system
such as the one proposed because it would allow the user
to verify the results of the machine learning process.
However, the sizes of the decision trees and rule lists
obtained in our tests made them non-readable in practice.
Fig. 13 shows the average number of nodes of the
decision trees obtained in our tests (standard deviations
and a point cloud representation are also included); and
Fig. 14 shows an example decision tree. Similar results
were obtained for the rule list algorithm; thus, both
methods cannot be considered readable in practice, and
they have no advantages over NN.

Regarding on-line computing time, although the nearest
neighbour algorithm is the slowest one when the size of
the training dataset increases, its speed in ordinary
scenarios is adequate for our application. A standard
grasp, which involves two classification steps (point
attributes and point-set attributes) is synthesized in
around 0.2 sec.,, which is much faster than the time
required for a robot arm and hand to move to the desired
location in most applications.

In conclusion, then, nearest neighbour is selected as the
best machine-learning algorithm for our application.
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Figure 13. Decision tree size (number of nodes) vs. number of
training examples.
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Figure 14. Example of decision tree (300 training examples,
confidence level set to 0.30).

5. Experimental results

The goal of the algorithm proposed in this paper is not
only to infer good grasps according to the shape of the
objects (e.g. centred grasps or grasps fulfilling force/form
closure) but to infer good grasps according to the
operation to be performed with the object (e.g. objects
with a handle should be grasped by it).

Taking the above considerations into account and in
order to check the performance of our algorithm, four
different tests have been performed:

5.1 First test: standard grasps

The training examples correspond to objects grasped close
to the centre of gravity and using preferably planar
surfaces. The training grasps performed by the user are
shown with green arrows in Fig. 15. We followed a leave-
one-out scheme, where every database object was
autonomously grasped by the system using as training
examples the grasps performed by the user for all other
objects. The results are shown with red arrows in the same
Fig. 15. The grasps can be considered appropriate in most
cases (although appropriateness is a subjective measure).

0bj.01 0bj.02 0bi.03 0bi.04
0bj.05 0bj.06 0bj.07 0bj.08
0bj.09 0bj.10 obij.11 0obj.12
ADEI= CD 3?
0bj.13 obj.14 0obj.15 0bj.16
zDi‘ O E:j
obi.17 obi.18 obi.19 obi.20

Figure 15. Results of the first test: standard grasps.
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As expected, the autonomous grasps were not identical to
the training grasps (as it has been said, the training data
for the object to be grasped autonomously was kept
apart), but the general behaviour (whenever possible, to
grasp at planar or concave points and close to the centre
of gravity) was correctly inferred. The only objects with
grasps not completely fulfilling such behaviour were
objects 8, 13 and 19 (one or both of the contact points fall
on a convex area when there are other options); and
object 9 (the grasp is correct, but it could be closer to the
centre of gravity of the object). Anyway, it must be taken
into account that the above mentioned grasping rules
were not given explicitly: they were inferred from a
small-sized set of training examples (19 examples) with
no extra information.

5.2 Second test: particular grasping behaviours

The goal of the second test was to check whether the
system imitates human behaviour. The training examples
were grasps performed with a strong bias. In particular,
contact points were placed close to the object vertexes, as
Fig. 16 shows (green arrows). In order to check the ability
of the system to imitate such behaviour, we followed a
leave-one-out scheme similar to that of the first test.

The results can be seen in Fig. 16 (red arrows), where it
becomes clear that the system has worked according to its
expected behaviour. Once again, the autonomous grasps
are obviously not identical to the training examples, but
the main idea (whenever possible, grasp close to an
object’s vertex) has been correctly inferred. Of course,
some of the grasps would not be reliable (e.g. objects 10
and 19): the goal of this second experiment was not to
find good grasps, but to check to what extent the user
behaviour was imitated (actually, some of the training

grasps were also unreliable).
0bj.01 0bj.02 0bj.03 0bj.04
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obi 17 obi.18 0bi.19 0bi.20

Figure 16. Results of the second test: particular grasping
behaviours.
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5.3 Third test: grasps related to operation

This is the most challenging test. A specific object
database was designed, with objects belonging to three
different categories: wine glasses, mugs and frying pans.
The training examples try to tell the system that wine
glasses must be grasped by their necks, while mugs and
frying pans must be grasped by their handles. The whole
database, the grasps performed by the user for every
object, and the results obtained in the leave-one-out
experiment are shown in Fig. 17. Each result (red arrows)
corresponds to the grasp inferred by the system for that
particular object, when all the other objects have been
used as training examples (green arrows).

--

obj21 obj 22 obj23

2

obj24 obj 25 obj 26

-0 | 1]
+

0hj.27 0bj.29

obj 30 obj 31 obj 32

0obj 33 ohj 34 0obj 35
w R -

obi.36 ohi 37 obi.38

Figure 17. Results of the third test: grasps related to operation.

Even for a challenging test like this one, the results show
that the system is able to infer correct rules without
explicit information. All grasps must be considered
adequate, except those of objects 26, 33, 37 and 38.

However, the previous results of Fig. 17 show that the
system is only able to infer specialized rules (rules for
specific objects). We performed a further test in order to
check whether our system was able to infer global rules: if
the object has a handle, grasp it - preferably - by its
handle; if it has not, grasp it - preferably - on a planar or
convex area and close to its centre of gravity. We used as
training examples all the examples of the first and the
third test, where there is a mixture of different grasping
strategies depending on the specific object. With this
training data, we performed a leave-one-out experiment
like those of previous tests. The results are shown in Fig.
18, and it becomes clear that the system has been capable
of inferring global rules, valid for all kinds of objects.

Taking a close look at Fig. 18, the results must be
considered quite good overall, although some grasps are
not adequate. The wrong grasps are those involving
object 9 (a similar error to that of the first test), object 19 (a
frying pan must be grasped by its handle, but the system
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has decided to perform a different grasp to that of all
other frying pans, possibly due to the difference in size),
objects 22 and 26 (wine glasses not grasped by their
necks), and finally objects 33, 37 and 38 (mugs not
grasped by their handles).

u
A
32

obj.01 obj.02 0bj.03 obj.04

&
¢
=

0bj.05 0bj.06 0bj.07 0bj.08
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Different tests carried out show that supervision helps in
rapidly reducing the number of wrong grasps. As an
example, in Fig. 19 the results of performing a single
supervision step (one iteration) from the previous results
of Fig. 17 are shown. Comparing the results, it can be seen
that all the new grasps are slightly different to those
obtained before the supervision step; the reason is that
the grasping rules have been modified after introducing
new examples to the database. With regard to the objects
selected as wrong grasps in the supervision step (26, 33,
37 and 38), three of them (26, 37 and 38) are now grasped
correctly, while object 33 still shows a wrong grasp.
Further supervision steps can correct such behaviour.
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Figure 18. Combination of the first and third tests: mixed grasps.
5.4 Fourth test: supervision of results

According to the results of the previous tests, some of the
objects are not grasped properly. One of the reasons is the
way in which invalid grasps are obtained. Invalid contact
points (see section 3) are selected randomly, so that in
some cases they may actually be valid contact points. We
will call these examples false invalid examples.

The supervision scenario we propose is simple: during

autonomous behaviour the user simply needs to tell the

system which of the synthesized grasps is not

appropriate, and the system will add it to the training

database as an invalid grasp, discarding one of the

randomly selected invalid grasps previously in the

database. Thus, there are two benefits:

e A new example of a wrong grasp (according to the
user’s opinion) is added to the training set.

e A randomly selected wrong grasp (which could be a
false invalid grasp) is deleted from the training set.
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Figure 19. Results of fourth test: supervision loop.

All of the code which was developed as well as the object
database and detailed instructions on how to use them
(including a tutorial) have been made available at [32].
Thus, all the previous experiments can be easily verified
and further tests can also be performed.

5.5 Experiments on a real setup

Our approach was also tested in a real scenario, using a
Mitsubishi RH-5AH55 robot arm equipped with a two
jaw parallel gripper and a video camera (see Fig. 20). The
objects to be grasped were placed over a uniform
background, where their contours were easily extracted
by a
morphological filter.

region growing algorithm followed by a

The system was trained in simulation (using the standard
grasp training set shown in section 5.1), and the inferred
rules were used to grasp 12 different real objects. In our
experiments, 92% of the grasps were successful (the object
was picked, raised and displaced without falling), even
though none of the 12 real objects were used during
training. Some example videos are available at [32].
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Figure 20. Experimental setup.
6. Conclusion

We have shown that it is possible to successfully
synthesize robot grasps by means of pattern recognition
techniques, without predefined rules, and relying only on
the grasp examples given by the user.

The main advantage of our proposal is its ability to
imitate user behaviour, as we have shown with different
experiments.

Nearest neighbour seems to be the best performing
pattern recognition technique for this particular
application, although other options tested - such as
multilayer perceptrons, decision trees and rule lists - also
perform well.

Since grasp strategies are inferred from examples given
by the user, there is no need to consider the mechanical
properties of the object or gripper; the user takes this
information into account when performing the grasp
examples, and the system imitates such behaviour when
grasping a new object.

Our approach is mainly focused on rigid objects;
however, a learning-based algorithm like the one we
propose can also cope with deformable objects, provided
that enough grasp examples are supplied to the system.
Tests with non-rigid objects will be considered in future
work. Future work also involves the extension of our
algorithm to 3D grasps. Such extension requires the
definition of new grasp attributes.
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