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Abstract—Recently, a number of empirical studies have compared the

performance of PCA and ICA as feature extraction methods in appearance-based

object recognition systems, with mixed and seemingly contradictory results. In this

paper, we briefly describe the connection between the two methods and argue that

whitened PCA may yield identical results to ICA in some cases. Furthermore, we

describe the specific situations in which ICA might significantly improve on PCA.

Index Terms—Computer vision, object recognition, principal component analysis,

independent component analysis.

Ç

1 INTRODUCTION

OVER the last few years, there has been increasing interest in
appearance-based object recognition due to its successful results in
noncontrolled scenes compared to classical model-based techni-
ques [7], [8], [11]. Appearance-based recognition approaches are
able to manage changes in illumination conditions, shape, pose
and reflectance [24], and even to handle translation and partial
occlusions [27].

First appearance-based systems found in the literature used

Principal Component Analysis (PCA) for dimensionality reduction

purposes [17], [24], [25], [27], [30], while recently the use of the

independent component analysis (ICA) for feature extraction is

preferred by some authors.1 In fact, a number of empirical studies

have claimed that ICA outperforms PCA as a feature extraction

method in classification systems [4], [10], [12], [13], [22], [29], [31],

[33], although [23], [32] state that both approaches perform equally,

[28] suggests that the performance of ICA is very dependent on the

data set, and [3], [14] claim that PCA is superior to ICA. The main

goal of this short paper is to explain those seemingly contradictory

results and to clarify under which circumstances ICA may

outperform PCA.

2 METHODS FOR DIMENSIONALITY REDUCTION

First of all, it is necessary to have a look at the subtle differences

between PCA, Singular Value Decomposition (SVD), and whiten-

ing. Although they are intrinsically very close, whitening and PCA

transform differ in one important aspect that can affect the

performance of the classifier used in the recognition system.

2.1 PCA, SVD, and Whitening

In the original data matrix X, each column contains the pixels
values of one image vector, x, and it is assumed that the data has
been centered. The PCA transform of the data matrix X of size
m� n is

Y ¼ UTX; ð1Þ

where U is a m�m orthonormal matrix. The principal compo-
nents (columns of U) are found by recursively seeking out the
directions of maximum data variance, under the constraint of
orthogonality. The principal component vectors are exactly the
eigenvectors of the covariance matrix CX ¼ 1

N XXT in decreasing
order of corresponding eigenvalues. The largest eigenvalue equals
the maximal variance, while the corresponding eigenvector
determines the direction with the maximal variance. The transfor-
mation defined in (1) also gives uncorrelated components.

In (1), Y is the original data matrix projected on the PCA
subspace defined by the eigenvectors, here, it is possible to
reduce the dimension of the data just by selecting a subset of
k eigenvectors from the total set ð<m ! <kÞ,

eY ¼ eUTX: ð2Þ

We can approach PCA from a slightly different point of view
and consider that U is one of the matrices of the SVD of the
data matrix X,

X ¼ U�VT ; ð3Þ

where U and V are m� r and n� r matrices with orthonormal
columns and � is a r� r diagonal matrix with the nonnegative
singular values �j; j ¼ 1; . . . ; r, arranged in nonincreasing order
along the diagonal, and where r is the rank of X.

From (3), it follows that XXTU ¼ U��T and XTXV ¼ V�T�,
demonstrating that the columns of U are the eigenvectors of XXT

and the columns of V are the eigenvectors of XTX.
Note that X can be written as the sum of r rank-1 matrices,

X ¼
Xr
j¼1

�jujv
T
j : ð4Þ

This implies that the zero singular values may be ignored since they
carry no information. Equation (5) also shows that it is possible to
approximate X by just using the first k columns of U and V,

X �
Xk
j¼1

�jujv
T
j ¼ eUe�eVT : ð5Þ

A zero-mean random vector z is said to be white if its elements are
uncorrelated and have unit variances, this obviously means that
their covariance matrix is equal to the unit matrix I. As whitening
can be accomplished by decorrelation followed by scaling, the PCA
technique can be used, and (6) defines the whitening transform of
the original data matrix.

eZ ¼ e��1 eUTX ¼ eVT : ð6Þ

2.2 ICA

ICA [16] tries to explain the original data using statistically
independent random vectors. The observed random data matrix X

is modeled as

X � AS; ð7Þ

where S is the matrix containing the statistically independent
random vectors and A is the mixing matrix. We can also write
(7) as:

S ¼WX; ð8Þ

896 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 5, MAY 2007

. M. Asunción Vicente is with the Department of Industrial Systems
Engineering, Miguel Hernández University, Avenida de la Universidad s/
n 03202-Elche (Alicante), Spain. E-mail: suni@umh.es.

. P.O. Hoyer and A. Hyvärinen are with the Helsinki Institute for
Information Technology, Basic Research Unit, University of Helsinki,
PO Box 68, FIN-00014, Finland.
E-mail: {patrik.hoyer, aapo.hyvarinen}@helsinki.fi.

Manuscript received 30 Nov. 2005; revised 28 Apr. 2006; accepted 10 July
2006; published online 18 Jan. 2007.
Recommended for acceptance by H. Wechsler.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0656-1105.
Digital Object Identifier no. 10.1109/TPAMI.2007.1025.

1. Although ICA has been connected with sparse representations and
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where W is equal to the pseudoinverse matrix of A, that is,
W ¼ Ay. Typically, in ICA algorithms, vectors wi are sought such
that the rows of S have maximally non-Gaussian distributions and
are mutually (approximately) uncorrelated. A simple way to do
this is to first whiten the data as in (6), and then seek orthogonal
nonnormal projections ðRÞ:

S ¼ RT e��1 eUTX ¼ RT eZ ð9Þ

so, in (9), it is shown that in fact, in this case, ICA is a whitening
operation followed by a rotation, and the ICA model can be also
written as

X � eUe�eVT ¼ eUe�R|fflffl{zfflffl}
A

RT eVT|fflfflffl{zfflfflffl}
S

¼ AS: ð10Þ

Here, we wish to emphasize that in the ICA model neither A nor
W are constrained to be orthogonal. Rather, the constraint (exact
[15] or approximate [5], depending on the choice of algorithm) is
that the transform be decorrelating, meaning that the rows of S are
(exactly or approximately) orthogonal. This is because strongly
nonorthogonal rows imply strong linear correlations between the
estimated components, which is not allowed since the goal was to
get independent components, and independence entails uncorre-
latedness. Thus, all ICA algorithms which output approximately
uncorrelated components with approximately equal variances are
essentially performing an orthogonal transform of the whitened
data.

A number of popular ICA algorithms exist. These include
FastICA [15], [16], Infomax [5], [18], Comon’s algorithm [9], and
KernelICA [2]. In the case of FastICA and KernelICA, the data is
first whitened and, subsequently, an orthonormal separating
matrix is sought, as in (9). In contrast, Infomax does not strictly
enforce complete linear decorrelation. Note that this implies that in
cases where higher-order dependencies in the data are strong
relative to the second-order dependencies, Infomax may yield a
decomposition which is not even approximately an orthogonal
transform of the whitened data. Comon’s algorithm may also give
a significantly nonorthogonal transformation from the whitened

data due to the different normalization employed, as described
later in this section.

In Figs. 1 and 2, the results of transforming two-dimensional
artificial data sets using PCA, whitening, and the ICA model (by
means of FastICA (Fig. 1) and Extended Infomax [18] (Fig. 2)) are
illustrated. In the top row of each figure, the original data set has a
uniform distribution on a parallelogram (a sub-Gaussian data set);
while the original data set in the bottom row has a sparse
distribution (a super-Gaussian data set).

Fig. 1 has been drawn using FastICA, so it shows the ICA
transformation as in (9). In the top row, the original data set has a
uniform distribution on a parallelogram (Fig. 1a), but the
components are not independent and it is possible to predict the
value of one of them from the value of the other. The uncorrelated
data set is shown in Fig. 1b, the direction with the maximal
variance is the vertical axis, and the second principal axis is the
horizontal one. The whitened data is shown in Fig. 1c, whitening
gives the ICs only up to an orthogonal transformation. And,
finally, the independent data set appears in Fig. 1d. The same
process is shown in the bottom row, but in this case the original
data set has a super-Gaussian distribution. Fig. 1e shows the
original data sets with the ICA and PCA directions. There, we may
appreciate that the constraint of orthogonality holds on PCA
directions ðUÞ and does not hold on ICA directions ðWÞ.

It should be noticed how whitening changes distances between
points and, so, the distance between two points is not the same in
the uncorrelated data and the whitened one. However, the distance
between two points is equal in the whitened data and the
independent one as the two are equivalent up to a rotation.

In order to show that (for this simple artificial data set) the ICs
obtained by Infomax are also, approximately, an orthonormal
transformation of the whitened data, Fig. 2 shows the same
artificial data sets as Fig. 1 but the ICs have been obtained (Fig. 2b)
by means of the Extended Infomax algorithm [18], which can
estimate both sub- and super-Gaussian components. It is possible
to see that the independent data (Fig. 2b) obtained from Infomax is,
approximately, a rotated version of the whitened data (Fig. 2c,
copied from Fig. 1c for comparison purposes). Note, however, that
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Fig. 1. Two artificial examples: (a) a sub-Gaussian data set (top row) and a super-Gaussian data set (bottom row), (b) both transformed by PCA, (c) whitening, and

(d) using the ICA model by means of FastICA. (e) shows the original data set with the ICA (a1, a2 and w1, w2) and PCA directions (u1, u2). (a) Original. (b) Uncorrelated.

(c) Whitened. (d) Independent. (e) All directions.



these results cannot always be extended to real-world data sets,
where the results of Infomax may not be orthogonal from the
whitened data [4]. This fact will be clearly shown on Section 6.

Although the above equivalence holds for the most widely used
ICA algorithms [2], [5], [15], [16], [18], it does not quite hold for the
algorithm of Comon [9]. This is because his algorithm renormalizes
the components so that the basis vectors (columns of A) have unit
norm. Since this also changes the variance of the independent
components (rows of S), the transform is in this case not an
approximate rotation from the whitened data. Hence, distances,
and angles, may change. However, with a few notable exceptions
[19], [20], [21], almost all [3], [4], [10], [12], [13], [14], [22], [23], [28],
[29], [31], [32], [33] PCA/ICA comparisons for pattern recognition
purposes have used FastICA or Infomax (or its extended version)
to perform ICA.

3 DIFFERENT ARCHITECTURES: INDEPENDENCE IN

A OR IN S?

Previous papers [4], [10], [32] have described two different
architectures for the ICA decomposition of an image set. The
difference between these two is a simple choice of where we want
the independence. Do we want the basis images (columns of A) to
be mutually independent, or do we seek a decomposition where
the coefficients (rows of S) are mutually independent? The former
corresponds to architecture I, the latter to architecture II [4], [10].

In equations, the question is whether we write

X � eUe�RRT eVT ;

and optimize the orthogonal matrix R to make S ¼ RT eVT as
independent and non-Gaussian as possible, or whether we write
X � eURRT e�eVT , and optimize R to make A ¼ eUR as indepen-
dent and non-Gaussian as possible. The concept about the two
types of architectures is illustrated in Fig. 3.

In either case, the independent components, that is, the matrix
having been optimized for independence, is always an orthogonal
transformation from the whitened data given by SVD, at least in the
case of FastICA. As we shall argue in the next section, this implies

that if a rotationally invariant classifier is subsequently used, there

is no point in performing the optimization of R.

4 ROTATION INVARIANT CLASSIFIERS

Most common classifiers are invariant to a rotation of the data

space. This makes intuitive sense, if one does not have any

preexisting knowledge on the structure of the data space, it seems

reasonable to build a classifier which does not care about data

rotations. Typical examples are all classifiers based on the

Euclidean distances, or based on the angles, between data points

[17], [24], [30]. As it was shown in (9), and further argued in

Section 3, the independent components are the result of a simple

rotation of the whitened data given by SVD. Hence, a rotation-

invariant classifier will not do any better nor any worse when fed

with the independent components than when fed with the

whitened data. Thus, ICA gives you absolutely no advantage over

SVD. Empirical verification of this claim is given in Section 6. Note
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Fig. 2. Two artificial examples: (a) a sub-Gaussian data set (top row) and a super-Gaussian data set (bottom row), (b) both transformed using the ICA model by means of

Extended Infomax. (c) The whitened data, copied from Fig. 1 for comparison. (d) shows the original data set with the ICA (a1, a2 and w1, w2) and PCA directions ðu1;u2Þ.
(a) Original. (b) Independent. (c) Whitened. (d) All directions.

Fig. 3. Different architectures for the ICA decomposition of an image set: Do we

want independence in A or in S?



also that, before us, Yang et al [32] came to the exact same

conclusion based on experiments on the FERET face database.
However, there are many scenarios in which ICA can give you

a different (and, hence, possibly better) result than SVD. First, if the

used classifier is rotationally noninvariant, there may be advan-

tages to performing the rotation ICA gives [6]. Second, if a feature

selection step is employed and only a subset of all components are

used for classification [4], the subspaces selected can differ, and

hence, the classification results may differ as well. And, finally,

when using Comon’s algorithm, or in some cases when using

Infomax, the found components are not necessarily a rotation of

the whitened data and, hence, the equivalence can disappear.
In conclusion, when employing ICA it is important to use either

feature selection or a rotation variant classifier, or both, since,

otherwise, there is little justification for performing an expensive

ICA optimization, instead of simply employing the SVD.

5 SELECTING SUBSETS OF COMPONENTS

In the previous sections, we showed that, as typically applied,

there is no reason to prefer ICA over whitened data. However, the

performance of ICA and PCA may differ when a subset of

components is used for classification. To illustrate this fact, an

artificial data set similar to the sub-Gaussian data in Fig. 1 has been

assigned to two different classes in two extreme examples in Fig. 4.

In both plots, the directions of the eigenvectors, U, and the ICA

directions, W and A, from the artificial data set are drawn. As both

techniques are unsupervised, these directions are independent

from the classes in the data set, so they are equal for both extreme

examples. In Fig. 4a, it is easy to appreciate how the classes are

perfectly separated using just the projection over the ICA direction

w1, while in Fig. 4b, the classes are better separated using the

direction of eigenvector u2. Therefore, in each example, a feature

selection step may help to reduce the dimensionality and improve

the classification. If no feature selection is carried out, ICA and

whitened PCA perform exactly equally well on both data sets,

provided a rotationally invariant classifier is used.

6 EXPERIMENTAL RESULTS

Some experiments with real data have been carried out in order to

test our hypothesis about the ICA/whitened PCA equivalence.

Both the ORL face database [1] and the COIL-100 object database

[26] have been used, and the results have been obtained both for

FastICA and Infomax algorithms. The classifier used is a 1-NN

with Euclidean distance. Due to space limitations, only a summary

of the results obtained is shown in this paper; the full set of

experiments and the Matlab code used are available at http://
isa.umh.es/arvc/personal/suni/ica_pca/index.html.

Fig. 5 (experiment 12 of the above mentioned URL) shows the
results obtained by whitened PCA, FastICA and Infomax with the
ORL face database. For a number of components ranging from 5 to
200, the average and standard deviation of 10 repetitions of the
same experiment are shown. No feature selection is performed.

From these results, it becomes clear that FastICA and whitened
PCA perform equally, and that Infomax shows some differences.
These differences are more clear when the number of components
used is either very low or very high. Particularly, when the number
of components is very high, the recognition rates obtained by
Infomax are clearly better than those of FastICA or whitened PCA.
Although these good results are found when the number of
components is far from the optimum in terms of recognition rates,
they deserve a further study in order to find an explanation, which
may be related to the nonorthogonality of the components
returned by Infomax. Such study is left for further work, as it
falls beyond the scope of this short paper.

Fig. 6 shows similar experiments to those of Fig. 5 but
considering feature selection (experiment 21 of the above men-
tioned URL). In these figures, the original data (40 classes with
10 examples per class, so the size of X is 10,304 � 400) has been
reduced to just 5, 10, and 20 components (5 � 400, 10 � 400, and
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Fig. 4. The best selection of the features may be different depending on the

classes of data set. In (a), the classes are perfectly separated using just the

projection over the ICA direction w1, while in (b), the classes are better separated

using the direction of the eigenvector u2.

Fig. 5. ICA/whitened PCA comparison using the ORL face database using all

components.

Fig. 6. ICA/whitened PCA comparison using the ORL database when an

exhaustive feature selection process is carried out.



20 � 400) by means of whitening, Infomax, and FastICA. For each

method, the best component is selected as the one which offers the

best classification results when used alone. The same process is

performed to find the best subset of two and three components

using an exhaustive search or “brute force” method, so we have

computed the recognition rates of all possible subsets of two and

three components. In this way, the results show the recognition

rates that could be obtained with each algorithm if a perfect

selection of components is carried out. We have used a quite small

number of components in order to be able to perform an

exhaustive search. Such search quickly becomes computationally

intractable when the number of components grows.
The results show clearly that a feature selection process may

have a strong influence in the recognition rates obtained by each

algorithm. FastICA and whitened PCA no longer perform equally;

and the same applies to Infomax. Even though the results of the

three algorithms differ to a great extent, there is no clear winner.

As all of the algorithms are unsupervised, the results are highly

dependent on the class distributions. This fact was previously

illustrated in Section 5 with the artificial data sets from Fig. 4.

7 DISCUSSION

Visual appearance-based object recognition methods are usually

based on feature extraction techniques such as PCA and ICA. In

the present paper, it has been shown how ICA and PCA are closely

connected and under which circumstances their perfomance is

totally equivalent. Their performance may differ significantly if

1. a feature selection process is carried out,
2. a rotationally noninvariant classifier is used,
3. a renormalization such as that used in Comon’s algorithm

is performed, or
4. Infomax is used and the data yields independent compo-

nents which are not close to an orthogonal transform from
the whitened data.
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