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 Abstract - A redundancy resolution technique devoted to 

grasp synthesis is presented. Given a set of contact points and a 

certain robot arm and gripper, the goal is to select both the best 

assignment of gripper fingers to contact points and the best 

joint values that allow the fingers to reach such contact points. 

The system proposed is based on the generation of an inverse 

kinematics tree where fast searches can be performed in order 

to find the optimum configuration.  Optimality is defined as 

similarity to previously stored examples over a hierarchical 

structure of configuration data, which includes finger 

assignments and robot joints. 

 
 Index Terms - Grasp synthesis, inverse kinematics, 

redundancy resolution, machine learning.. 

 

I.  INTRODUCTION 

 New robotic applications require robots to grasp 
previously unknown objects in non-structured environments; 
service robotics [1] or partially automated teleoperation 
(also known as collaborative control) [2] are among these 
new applications. In order to perform correct grasps 
autonomously, a certain degree of intelligence is required in 
robot controllers. Information about the objects to be 
grasped is obtained through different sensors, mainly video 
cameras or range sensors, and the robot has to process such 
information and decide which are the optimum contact 
points where to place the gripper fingers on the object. 
Besides, an inverse kinematics problem has to be solved in 
order to command the robot arm and gripper joints so that 
the fingers or end effectors reach the previously defined 
contact points. 
 The whole problem is referred to as robot grasp 

synthesis and has been addressed by many authors. 
Normally, the focus is centered on the selection of the 
optimum contact points, according to different criteria: 
fulfillment of form or force closure conditions [3], 
maximization of additional quality measures [4], similarity 
to previously stored examples [5], etc. However, the 
selection of the optimum contact points represents only a 
partial solution of the problem: once they are selected, a 
feasible configuration (i.e. joint values) has to be computed 
for both robot arm and hand so that the end effectors are 
able to reach the previously selected contact points. This is 
the problem addressed in the present paper. 

II.  PROBLEM STATEMENT 

When attached to a robot arm, robot hands are highly 
redundant devices (except very simple grippers like two jaw 
parallel ones) so that a certain set of contact points can be 
reached by multiple different sets of joint values. A 

redundancy resolution technique has to be used in order to 
select the best configuration. 
 The problem can be stated as follows: given a certain set 
of n contact points on the surface of an object, which will be 

vectors in 3ℜ  and can be denoted as P in (1); the goal is to 
select the optimum joint values for a certain robot arm and 
hand. 
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The robot arm is considered to have ma DOF and the 
robot hand is supposed to be equipped with n fingers (one 
per contact point, pinch grips will be assumed) each of them 
with mi DOF. So, in the general case, the joint space is m-
dimensional, where m is defined in (2), and a certain 
configuration is defined by its m joint values, as Q in (3) 
where qi represents the i-th joint of the robot arm and qij 
represents the j-th joint of finger i. Each joint can be 
rotational or translational. 
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It must be stated that, apart from the inherent 
redundancy of each finger of the robot gripper (which can 
reach a certain position with multiple different sets of joint 
values) there is another source of redundancy: the 
assignment of contact points to gripper fingers is not fixed. 
In this sense, all the possible combinations have to be 
considered. For a n finger robot hand reaching n contact 
points, the number of possible assignments equals n!, even 
though most of them will be unfeasible due to kinematical 
restrictions or collisions.  

III.  POSSIBLE APPROACHES 

 The first option that has to be considered is to look for a 
closed form solution of the inverse kinematics problem; i.e. 
to find a certain function f so that f(P)=Q. However, this 
closed form solution can only be obtained for non-redundant 
robots with special geometries. When there is redundancy, a 
commonly used solution is to add constraints for the 
redundant DOF; i.e. to held fixed a certain joint or to 
establish some fixed relationships between different joints. 
However, these solutions decrease the dexterity of robots 
and grippers: some of the available DOF are not exploited. 

A different approach is based on the use of iterative 
methods to approximate a good solution, normally based on 
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the Jacobian matrix J. In a general case, when there are 
multiple end effectors (e.g. grasping devices) the Jacobian 
matrix is defined as in (4), where pi denotes the i-th end 
effector position (depending on the applications, pi can 
represent both the end effector positions and orientations) 
and qj denotes the j-th robot joint. 
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Inverse kinematics resolution based on the Jacobian 
matrix can be accomplished in many different ways: the 
Jacobian transpose method [6], the Jacobian pseudoinverse 
or null-space method [7], the damped least squares method 
[8], etc. Each approach offers different advantages; e.g. the 
null-space method allows solving redundancy by fixing 
secondary goals, as to avoid joint limits or to minimize the 
movement of a certain joint. However, none of these 
approaches is devoted to grasping processes and they do not 
take into account the grasp assignment problem; i.e. which 
finger should be assigned to each contact point. 
 Other redundancy resolution methods are based on 
parametric modeling rather than in the Jacobian matrix. In 
[9], an approach based on human motor control theories is 
presented. A taxonomy of robot motions is generated and, 
for each motion example, the joint values are computed in an 
off-line step called skill acquisition. When the robot is 
requested to perform a certain motion, function 
approximators are used to interpolate the joint values 
corresponding to the desired motion from the available 
skills. The main advantage of this method is its low on-line 
computational complexity. However, the same problem 
found with the Jacobian based methods persists: the skill 
based approaches are not devoted to grasping processes and 
the assignment problem is not addressed. 

Some other approaches are specific to grasping 
processes, among them the one presented in [10], where 
grasps are computed starting from generalized prototypes or 
grasp primitives. These prototypes are adapted to the 
particular object being grasped. Somehow, these prototypes 
can be considered as robot skills following Dordevic’s 
nomenclature [9]. Even though this approach solves the 
assignment problem, it can not work for any set of contact 
points, but only for a set of contact points that have been 
previously generated according to a certain grasp prototype. 
In this sense, it can not be considered general enough. 

IV.  PROPOSED APPROACH 

 The proposed approach for redundancy resolution is 
devoted to robot grasping processes, although it can be 
extended to other fields of application. Three main points 
constitute the basis of this approach: 
• Imitation of human behavior, so that the system learns 
from grasp examples provided by the user. 
• Establishment of a hierarchy of robot joints; the goal is 
to give priority to those joints more relevant to grasp quality. 
• A novel tree-based representation of the robots inverse 
kinematics which allows fast search procedures. 
 Though general, the proposed approach requires a 
certain adaptation to the particular robot arm and hand used. 

The following paragraphs describe the off-line and on-line 
processes involved. 
 

A. Off-line processing 

 As an off-line process, grasp examples of different 
objects are stored. These examples can be given by 
teleoperation of the robot with a master device or through a 
simulation environment. The data recorded for each grasp 
example includes local and global features of the user 
selected contact points (related to the geometry of the object 
to be grasped); the finger assignments; and the set of robot 
arm and hand joint values. The size of the data vector stored 
for each grasp example is shown as fT in (5), where m 
represents the total number of joints, n the number of contact 
points (and the number of assignments), fL the number of 
local features and fG the number of global features. Local 
and global features for a certain set S are represented by the 
real valued vectors L

S and GS in (6) and (7) respectively; 
where Li corresponds to the local feature vector of the i-th 

point of the set; i

jl  corresponds to the j-th local feature of 

the i-th point; and S

jg  corresponds to the j-th global feature 

of the set S.  
 

mnffnf GLT +++⋅= .     (5) 
 

{ } { }n

L

n

L

n p

f

pp

f

ppppS l,...,l...,,l,...,lL,...,L,LL 11
1121 == .   (6) 

 

{ }S

f

SSS

G
g...,,g,gG 21= .      (7) 

 

Local features are computed for each contact point, and they 
include the distance to the center of mass of the object and a 
multiresolution measure of convexity. Global features are 
computed using as a reference point the centre of the convex 
hull defined by all the contact points, and include the 
distance from this reference point to the centre of mass of 
the object and a multiresolution measure of the angle 
between the normal at the contact point and the line directed 
to the reference point. Details about these local and global 
features can be found in our previous work [11]; in such 
work, these features are not only used for redundancy 
resolution but also for autonomously selecting the contact 
points on the surface of an object. Any other set of features 
would be valid for the proposed approach provided that they 
fulfill the following properties: 
• Their computation is fast enough 
• They provide insight about the kind of grasp being 
performed. 
 
B. On-line processing 

The on-line process starts when a robot configuration needs 
to be computed for a certain set of contact points. This 
process includes the generation of the tree and the search for 
the best inverse kinematics solution among those contained 
in the previously generated tree. 
 1) Tree generation: The goal is to generate an n+m 
depth tree, where n equals the number of fingers and m 
equals the total number of DOF. Each of the n-1 upper 
levels of the tree below the root node corresponds to a 
certain gripper finger, and each of the m following tree 
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levels corresponds to a certain joint of the robot, where both 
the different fingers and the different joints are ordered 
according to a previously defined hierarchy. This hierarchy 
should reflect the relevance of each finger and joint to grasp 
quality. The relevance can be established following any 
application specific criteria. Normally, those joints closer to 
the contact point (closer to the end effector) should be 
considered more relevant, as Fig. 1 shows. However, any 
other criteria would also be applicable. 
 

 
Fig. 1. Relevance of the different arm and hand joints. 

 
For understandability reasons, the following paragraphs 

describe the generation of the whole inverse kinematics tree; 
afterwards it will be explained how only a small subset of 
the tree needs to be computed, thus highly reducing the 
computational load. 

First, the generation of the upper subtree (the one 
corresponding to the first n levels, one per robot finger) will 
be explained. Once the hierarchy is established, this subtree 
is generated starting from a root node. A total of n child 
nodes have to be added to the root node, corresponding to 
the n possible assignments of finger number 1. For each of 
the n nodes of level 2, n-1 descendants are created, 
corresponding to the n-1 possible assignments of finger 2, 
and the process continues until finger n-1, which may have 
only two possible assignments. Fig. 2 represents an example 
of these first n levels of the tree for a three fingered robot 
gripper, where the second level corresponds to the first 
finger (which has 3 possible assignments), and the third level 
corresponds to the second finger (2 possible assignments). 
The last finger does not appear in the tree as it has only one 
possible assignment. 

 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Example of the n upper levels of an inverse kinematics tree. 

 

Each node in the tree is represented as j

if  where the 

superscript refers to the parent node and the subscript allows 
distinguishing between all the descendants of a certain node 

(node j

if  is the i-th descendant of the j-th node of the 

previous level). More than one superscript is needed if more 
levels are added to the tree; the nodes at the first level are 
considered child nodes of the root node or node 0. Each path 
from the root node to a leaf of this subtree represents a 
possible set of finger assignments. 
  The remaining m levels of the whole tree correspond to 
each of the m DOF of the robot arm and hand. To explain 
how these remaining tree nodes are generated, let us start at 
one of the leaves of the high level subtree, which will be 
considered as a root node for one of the lower level subtrees. 
The subtree is generated starting from the most relevant 
robot joint. Focusing in this first joint, a partial inverse 
kinematics analysis is performed trying to find the joint 
values for which a solution exists. Different results can be 
obtained: 
• The inverse kinematics can only be solved for a certain 
joint value. This means that there is no redundancy in this 
particular joint, and only one tree node is added at this level, 
which will contain the previously computed joint value. 
• The inverse kinematics can be solved for a finite 
number of different joint values. There is redundancy, and a 
node should be added for each of the valid values. 
• The inverse kinematics can be solved for infinite 
different joint values (ranges of joint values). There is a high 
redundancy, and the valid ranges need to be discretized in 
order to add as many nodes as valid joint values. The 
resolution used should make a justifiable compromise 
between accuracy and computational load, and can be 
chosen on an application specific basis. 

Once the first subtree level has been generated, the 
process continues with the next robot joint in the hierarchy. 
For each of the nodes created in the previous level, a new 
partial kinematics analysis is performed. Once again, the 
goal is to detect the values of the second joint for which a 
solution exists. Let us assume that the first subtree level 
consists of k1 nodes; then, k1 inverse kinematics problems 
have to be solved in this step of the algorithm, with m-1 
DOF (one of the joints has now a fixed value). Depending 
on the results of this analysis, one or multiple child nodes 
are added. The process continues with the following levels, 
until the lowest joint in the hierarchy is analyzed. The results 
of this last analysis correspond to the tree leaves. The 
number of tree leaves shows the number of possible 
solutions to the inverse kinematics (to the resolution level 
used in the discretizations). Even though the whole tree does 
not need to be computed (as will be explained in the next 
section) it must be stated that generating a full tree does not 
represent a very high computationally load as the number of 
DOF decreases at each tree level and the redundancy is also 
expected to be reduced when going deeper in the tree. 

Pseudocode for the lower level subtree generation 
algorithm is shown in Fig. 3 (the generation of the upper 
level subtree is straightforward) where the kinematics 
function is dependant on the particular robot arm and hand 
used; the sort_joints function depends on the relevance 
criteria used, and the remaining functions are generic. 

An example of low level subtree is shown in Fig. 4, 
where the joint value corresponding to each node is 

q1 

q2 

qm 

q11 

q1m1 
q211 

q2m2 

qn1 

qnmn 

Lower relevance joints Higher relevance joints

root 

0
1f  0

2f 0
3f  

1
1f  1

2f  2
1f  2

2f  3
1f  3

2f
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represented as ki,...,i,i

iq 21 : the superscripts give information 

about the parent nodes up to the root (a node at level k will 
have k-1 parent nodes) and the subscript allows to 
distinguish between child nodes of the same parent. 
Different situations are shown in the example: the initial 
inverse kinematics (first joint, second tree level) gives 
infinite solutions, which have been discretized in k1 values. 
Looking at the third tree level, different results are obtained 
for the second joint, which depend on the value of the parent 
node (parent joint): for the first value of joint 1, there are 
infinite solutions for joint 2, which are discretized to k2 
solutions; for the second value, only one solution is found; 
and for the k1-th value, a finite number of solutions (2 
solutions) are valid. Going deeper in the tree, the remaining 
joints can take only one value; this is a common situation as 
the number of DOF is highly reduced at these tree levels. 
 

sort_joints(relevance) 
create_root_node() 
TreeLevel := 1 
LevelNodes := 1 
repeat 
 ParentNode := 1 
 UpperLevelNodes := LevelNodes 
 LevelNodes := 0 
 repeat 
  ValidJointValues := kinematics(TreeLevel, ParentNode) 
  add_child_nodes(ParentNode, ValidJointValues) 
  LevelNodes := LevelNodes + count(ValidJointValues) 
  ParentNode := ParentNode + 1 
 while ParentNode <= UpperLevelNodes 
 TreeLevel := TreeLevel + 1 
while TreeLevel <= Joints 

Fig. 3. Lower subtree generation algorithm. 
 
 

Fig. 4. Example of the m lower levels of an inverse kinematics tree. 

  
2) Tree search: Once the tree has been generated, 

different search strategies can be used to look for the 
configuration closer to the examples. The first question to be 
answered is how to measure this similarity. 
 Let us consider that the user has performed ne grasp 
examples of different objects. The goal is, first, to select the 
grasp example whose contact points are more similar to 
those for which the inverse kinematics needs to be 
computed; i.e. to select the most similar grasp type among 
the examples. For this purpose, the previously mentioned 
local and global features are used; and a simple L2 norm is 
computed, with a previous normalization of the feature 

values in order to avoid preponderances of features with 
higher absolute values. The distance between two different 
sets of n points (S1, S2)  in the feature space is computed 

using a L2 metric, and it is represented as dF in (8), where l̂  
and ĝ represent normalized local and global feature values. 

The normalization used, which is described in (9) only for 
local features in order to avoid redundancy, fits every feature 
to the range [0, 1] by subtracting the minimum value and 
dividing by the difference between the maximum and the 
minimum value. It is a common normalization for 
multivariable distance measurement, particularly used in 
nearest neighbor classifiers [12]. A different normalization 
could have been used, in order to set every feature to have 
zero mean and unit variance, with similar results. 
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 Computing the closest example is straightforward once 
the distance has been defined; however, and in order to help 
the system find solutions for the inverse kinematics, not only 
the closest example but the T closest examples are used for 
redundancy resolution (T can be adjusted depending on each 
particular application). 
 Once the T closest examples are selected, the tree can be 
searched. The goal is to find in the tree a robot configuration 
as close as possible to that of one of the examples. There are 
several possibilities, among them the brute force approach 
which will perform a full search, either depth-first or 
breadth-first. The result will obviously be the best match, but 
computational cost will be extremely high. A heuristic 
search is proposed instead; it is not guaranteed to find the 
best match, but computational load is highly reduced as the 
tree is traversed only once from the root node to the selected 
leaf. 

The heuristic search proposed works as follows: starting 
from the root node of the tree, it has to be decided which 
child node to select at the first tree level. Child nodes at this 
level represent all the possible assignments of finger 1. In 
order to select the most similar assignment to those of the 
recorded examples, local features are used: features related 
to a single contact point.  In this case, the space is fL-
dimensional (fL local features), so the distance between two 
contact points in the configuration space can be expressed as 
dC in (10), using again a L2 metric. 
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However, distances in the configuration space and 
distances in the feature space have to be considered 
simultaneously; when selecting between candidate nodes, 
two criteria have to be fulfilled: 
• The configuration value of the node (joint value or 
assignment) should be as similar as possible to that of one of 
the selected examples. 
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• The local and global features of such example should be 
as similar as possible to those of the contact points under 
consideration. 

Storing not only the most similar example but the T 
most similar ones gives us more chances to find a good 
solution for the inverse kinematics, but distance computation 
becomes more complex. A parameterized distance measure 
is proposed, where both effects can be weighted according to 
a parameter (α ); such distance is represented as dT in (11). 
The factors GL ffn +⋅  and Lf have been introduced in order 

to obtain equal weights for both effects when the parameter 
α  is set to 0.5. 
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Once the distance has been defined, its application in 
order to select a certain node in the first level of the tree is 
straightforward: it suffices to compute the distance between 
the T examples and each of the nodes at the first level: the 
minimum distance node should be selected. 

For subsequent levels, a simpler measure distance has to 
be used: once an example has been selected (among the set 
of T examples) it should be kept for the remaining levels of 
the tree; i.e. the configuration most similar to that of the 
selected example will be searched for. So, subsequent 
comparisons up to the first n levels of the tree will use the 
configuration distance shown in (10). For comparisons at 
deeper levels, the distance measure to be used is slightly 
different. At these levels the information stored in each node 
does not represent finger assignments but robot joint values. 
The joint space is m-dimensional (m joints) but only one 
joint is considered at a time, so that a 1-dimensional distance 
measurement has to be computed; this can be as simple as a 
L1 norm computation. Such simple distance measure 
between two different values for a certain joint i is defined 
as dJ in (12). 
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The proposed search is extremely fast compared to a full 
search and, even though this heuristic search may not find 
the optimal match, the hierarchy of joints considered when 
building the tree ensures that the possible deviations from 
the optimal match will happen at lower levels of the tree, 
where the joint values have little relevance. 

 At this point, it has to be considered that it is not 
necessary to build the complete tree: building and searching 
can be performed simultaneously (as the proposed search 
strategy never performs backtracking) and child nodes need 
only to be computed for the selected nodes of the previous 
level. In this way, the whole process can be performed with 
a low computational load. 

Besides, some intermediate or hybrid solutions can also 
be accomplished: up to a certain level, a full search and full 
generation of the tree may be performed, and then the 
heuristic approach can be used for the lower levels of the 
tree. Such solution is selected for the application example 
presented in the next section: a full search is performed in 

the upper tree levels (those corresponding to the finger 
assignments) thus resulting in a set of leaf nodes; and then 
heuristic searches are performed in the lower tree levels, 
starting at each previous leaf node. 

V.  APPLICATION EXAMPLE 

As an example, the proposed grasp redundancy 
resolution method will be used to select the optimum 
configuration in a 2D planar problem. A three-fingered 
articulated gripper like the one shown in Fig. 5 is selected. 
The gripper has 4 DOF: 3 of them translational (opening and 
closing of the fingers) and one rotational (abduction of the 
two articulated fingers, which are coupled). As it can be seen 
in the figure, multiple different grasps can be performed with 
such gripper, given three contact points on the object 
surface.  First, three different finger assignments can be 
chosen (rows of the figure) and then, for each assignment it 
is possible to reach the contact points with different 
abduction angles (columns of the figure). 

 

 
Fig. 5. Redundancy of the three-fingered gripper used as an example. 

   
The gripper is supposed to be attached to a SCARA 

robot arm, which in a 2D representation adds 3 DOF. Fig. 6 
shows the planar structure of arm and gripper. The joints are 
numbered from 1 to 7, following the hierarchy order chosen 
for the application of the algorithm. 

 
Fig. 6. Joints of the example robot arm and hand. 

 

The more relevant joint has been considered the one that 
controls finger abduction (only one joint as abduction is 
coupled in both articulated fingers). Even though there are 
other joints closer to the contact points, this is the one that 
better represents the kind of grasp being performed. Next, 
the translational gripper joints: no difference in relevance is 
found in them, so they have been randomly ordered. After 

7
6 3 

1 
4

5

2
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the gripper joints, the SCARA arm joints follow in order of 
their distance to the contact points. 

 

 

 

 

 

 
Fig. 8. Object database used for example generation. 

 
 In order to generate grasp examples, a simulation 
environment has been developed. Different objects are 
presented to the user, who should operate the robot arm and 
gripper in order to grasp each object. Once an object has 
been grasped, both the contact points and the robot joint 
values are stored. The database used for the experiments is 
shown in Fig. 8: these are the objects presented to the user 
and also the objects the system will have to grasp 
autonomously once trained. In each experiment, a total of 50 
randomly selected objects are presented to the user, who 
performs grasps for all of them. 

Once the examples recorded, the next step is the 
generation of the tree. A hybrid approach has been used, 
with full tree generation for the assignment levels of the tree 
and heuristic tree generation for the joint levels. 

The assignment tree is quite simple due to the gripper 
being considered: once the first finger is assigned to a 
certain contact point, the other two fingers have fixed 
assignments. The result is an upper subtree with only three 
leaves. 
 

 
Fig. 9. Joint subtrees for the example application. 

 

For each upper subtree leaf, a heuristic generation of the 
joint subtree is performed, starting with joint 1. Let us call j1 
the angular value of joint 1. Without getting into geometry 
details, depending on the set of contact points a single 
solution j1=0 or a range of solutions j1>0 can be found. 

Depending on that result, joint 2 will have infinite valid 
values (when j1=0) or a single value (when j1>0). The 
remaining joints will be restricted to a single value except 
those of the SCARA robot arm which can reach the desired 
endpoint with elbow up or elbow down configurations. The 
two possible subtrees are schematically shown in Fig. 9. 

The computation of the trees and the search process 
performed simultaneously take about 0.3 sec. on a standard 
PC (256 MB RAM, 1.7 GHz) when the range of motion of 
the different joints is discretized in 20 values. 

VI.  CONCLUSIONS 

Robot grasp synthesis requires efficient redundancy 
resolution techniques. Previous approaches to redundancy 
resolution are not devoted to grasp synthesis, so they do not 
consider specific problems, like finger assignment. 

A tree based representation of the inverse kinematics 
like the one proposed can handle both the assignment 
redundancy and the joint redundancy, and allows fast 
searches to be performed. The experimental results obtained 
show the validity of the approach. 

The use of similarity to the examples given by the user 
as a way to solve the redundancy is a novelty and has many 
potential fields of application, among them humanoid robots. 
The method proposed for measuring similarity (joint 
hierarchy and inverse kinematics tree) is specific to grasping 
processes, but can be easily adapted to other robot 
operations. 

Future work is focused in the extension of the presented 
technique to redundancy resolution in path planning. 
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