
Kinematic Redundancy in Robot Grasp Synthesis. An
Efficient Tree-based Representation

César Fernández, Óscar Reinoso and Asunción Vicente Rafael Aracil
System Engineering and Automation Division UPM-DISAM

Miguel Hernandez University Polytechnical University of Madrid

Av. Universidad s/n, 03202 Elche (Alicante) Spain José Gutiérrez Abascal 2, 28006 Madrid, Spain

{c.fernandez, o.reinoso, suni}@umh.es aracil@etsii.upm.es

 Abstract - A redundancy resolution technique devoted to

grasp synthesis is presented. Given a set of contact points and a

certain robot arm and gripper, the goal is to select both the best

assignment of gripper fingers to contact points and the best

joint values that allow the fingers to reach such contact points.

The system proposed is based on the generation of an inverse

kinematics tree where fast searches can be performed in order

to find the optimum configuration. Optimality is defined as

similarity to previously stored examples over a hierarchical

structure of configuration data, which includes finger

assignments and robot joints.

 Index Terms - Grasp synthesis, inverse kinematics,

redundancy resolution, machine learning..

I. INTRODUCTION

 New robotic applications require robots to grasp
previously unknown objects in non-structured environments;
service robotics [1] or partially automated teleoperation
(also known as collaborative control) [2] are among these
new applications. In order to perform correct grasps
autonomously, a certain degree of intelligence is required in
robot controllers. Information about the objects to be
grasped is obtained through different sensors, mainly video
cameras or range sensors, and the robot has to process such
information and decide which are the optimum contact
points where to place the gripper fingers on the object.
Besides, an inverse kinematics problem has to be solved in
order to command the robot arm and gripper joints so that
the fingers or end effectors reach the previously defined
contact points.
 The whole problem is referred to as robot grasp

synthesis and has been addressed by many authors.
Normally, the focus is centered on the selection of the
optimum contact points, according to different criteria:
fulfillment of form or force closure conditions [3],
maximization of additional quality measures [4], similarity
to previously stored examples [5], etc. However, the
selection of the optimum contact points represents only a
partial solution of the problem: once they are selected, a
feasible configuration (i.e. joint values) has to be computed
for both robot arm and hand so that the end effectors are
able to reach the previously selected contact points. This is
the problem addressed in the present paper.

II. PROBLEM STATEMENT

When attached to a robot arm, robot hands are highly
redundant devices (except very simple grippers like two jaw
parallel ones) so that a certain set of contact points can be
reached by multiple different sets of joint values. A

redundancy resolution technique has to be used in order to
select the best configuration.
 The problem can be stated as follows: given a certain set
of n contact points on the surface of an object, which will be

vectors in 3ℜ and can be denoted as P in (1); the goal is to
select the optimum joint values for a certain robot arm and
hand.

ip},p...,,p{P in ∀ℜ∈= 3
1 . (1)

The robot arm is considered to have ma DOF and the
robot hand is supposed to be equipped with n fingers (one
per contact point, pinch grips will be assumed) each of them
with mi DOF. So, in the general case, the joint space is m-
dimensional, where m is defined in (2), and a certain
configuration is defined by its m joint values, as Q in (3)
where qi represents the i-th joint of the robot arm and qij
represents the j-th joint of finger i. Each joint can be
rotational or translational.

+=
=

n

i
ia mmm

1
. (2)

.j,iq,q

},q...,,q...,,q...,,q,q...,,q{Q

iji

nmnmm na

ℜ∀∈

= 11111 1 (3)

It must be stated that, apart from the inherent
redundancy of each finger of the robot gripper (which can
reach a certain position with multiple different sets of joint
values) there is another source of redundancy: the
assignment of contact points to gripper fingers is not fixed.
In this sense, all the possible combinations have to be
considered. For a n finger robot hand reaching n contact
points, the number of possible assignments equals n!, even
though most of them will be unfeasible due to kinematical
restrictions or collisions.

III. POSSIBLE APPROACHES

 The first option that has to be considered is to look for a
closed form solution of the inverse kinematics problem; i.e.
to find a certain function f so that f(P)=Q. However, this
closed form solution can only be obtained for non-redundant
robots with special geometries. When there is redundancy, a
commonly used solution is to add constraints for the
redundant DOF; i.e. to held fixed a certain joint or to
establish some fixed relationships between different joints.
However, these solutions decrease the dexterity of robots
and grippers: some of the available DOF are not exploited.

A different approach is based on the use of iterative
methods to approximate a good solution, normally based on

Proceedings of the 2005 IEEE
International Conference on Robotics and Automation
Barcelona, Spain, April 2005

0-7803-8914-X/05/$20.00 ©2005 IEEE. 1184

the Jacobian matrix J. In a general case, when there are
multiple end effectors (e.g. grasping devices) the Jacobian
matrix is defined as in (4), where pi denotes the i-th end
effector position (depending on the applications, pi can
represent both the end effector positions and orientations)
and qj denotes the j-th robot joint.

j,i
j

i

q

p
)Q(J

∂

∂
= (4)

Inverse kinematics resolution based on the Jacobian
matrix can be accomplished in many different ways: the
Jacobian transpose method [6], the Jacobian pseudoinverse
or null-space method [7], the damped least squares method
[8], etc. Each approach offers different advantages; e.g. the
null-space method allows solving redundancy by fixing
secondary goals, as to avoid joint limits or to minimize the
movement of a certain joint. However, none of these
approaches is devoted to grasping processes and they do not
take into account the grasp assignment problem; i.e. which
finger should be assigned to each contact point.
 Other redundancy resolution methods are based on
parametric modeling rather than in the Jacobian matrix. In
[9], an approach based on human motor control theories is
presented. A taxonomy of robot motions is generated and,
for each motion example, the joint values are computed in an
off-line step called skill acquisition. When the robot is
requested to perform a certain motion, function
approximators are used to interpolate the joint values
corresponding to the desired motion from the available
skills. The main advantage of this method is its low on-line
computational complexity. However, the same problem
found with the Jacobian based methods persists: the skill
based approaches are not devoted to grasping processes and
the assignment problem is not addressed.

Some other approaches are specific to grasping
processes, among them the one presented in [10], where
grasps are computed starting from generalized prototypes or
grasp primitives. These prototypes are adapted to the
particular object being grasped. Somehow, these prototypes
can be considered as robot skills following Dordevic’s
nomenclature [9]. Even though this approach solves the
assignment problem, it can not work for any set of contact
points, but only for a set of contact points that have been
previously generated according to a certain grasp prototype.
In this sense, it can not be considered general enough.

IV. PROPOSED APPROACH

 The proposed approach for redundancy resolution is
devoted to robot grasping processes, although it can be
extended to other fields of application. Three main points
constitute the basis of this approach:
• Imitation of human behavior, so that the system learns
from grasp examples provided by the user.
• Establishment of a hierarchy of robot joints; the goal is
to give priority to those joints more relevant to grasp quality.
• A novel tree-based representation of the robots inverse
kinematics which allows fast search procedures.
 Though general, the proposed approach requires a
certain adaptation to the particular robot arm and hand used.

The following paragraphs describe the off-line and on-line
processes involved.

A. Off-line processing

 As an off-line process, grasp examples of different
objects are stored. These examples can be given by
teleoperation of the robot with a master device or through a
simulation environment. The data recorded for each grasp
example includes local and global features of the user
selected contact points (related to the geometry of the object
to be grasped); the finger assignments; and the set of robot
arm and hand joint values. The size of the data vector stored
for each grasp example is shown as fT in (5), where m
represents the total number of joints, n the number of contact
points (and the number of assignments), fL the number of
local features and fG the number of global features. Local
and global features for a certain set S are represented by the
real valued vectors L

S and GS in (6) and (7) respectively;
where Li corresponds to the local feature vector of the i-th

point of the set; i

jl corresponds to the j-th local feature of

the i-th point; and S

jg corresponds to the j-th global feature

of the set S.

mnffnf GLT +++⋅= . (5)

{ } { }n

L

n

L

n p

f

pp

f

ppppS l,...,l...,,l,...,lL,...,L,LL 11
1121 == . (6)

{ }S

f

SSS

G
g...,,g,gG 21= . (7)

Local features are computed for each contact point, and they
include the distance to the center of mass of the object and a
multiresolution measure of convexity. Global features are
computed using as a reference point the centre of the convex
hull defined by all the contact points, and include the
distance from this reference point to the centre of mass of
the object and a multiresolution measure of the angle
between the normal at the contact point and the line directed
to the reference point. Details about these local and global
features can be found in our previous work [11]; in such
work, these features are not only used for redundancy
resolution but also for autonomously selecting the contact
points on the surface of an object. Any other set of features
would be valid for the proposed approach provided that they
fulfill the following properties:
• Their computation is fast enough
• They provide insight about the kind of grasp being
performed.

B. On-line processing

The on-line process starts when a robot configuration needs
to be computed for a certain set of contact points. This
process includes the generation of the tree and the search for
the best inverse kinematics solution among those contained
in the previously generated tree.
 1) Tree generation: The goal is to generate an n+m
depth tree, where n equals the number of fingers and m
equals the total number of DOF. Each of the n-1 upper
levels of the tree below the root node corresponds to a
certain gripper finger, and each of the m following tree

1185

levels corresponds to a certain joint of the robot, where both
the different fingers and the different joints are ordered
according to a previously defined hierarchy. This hierarchy
should reflect the relevance of each finger and joint to grasp
quality. The relevance can be established following any
application specific criteria. Normally, those joints closer to
the contact point (closer to the end effector) should be
considered more relevant, as Fig. 1 shows. However, any
other criteria would also be applicable.

Fig. 1. Relevance of the different arm and hand joints.

For understandability reasons, the following paragraphs

describe the generation of the whole inverse kinematics tree;
afterwards it will be explained how only a small subset of
the tree needs to be computed, thus highly reducing the
computational load.

First, the generation of the upper subtree (the one
corresponding to the first n levels, one per robot finger) will
be explained. Once the hierarchy is established, this subtree
is generated starting from a root node. A total of n child
nodes have to be added to the root node, corresponding to
the n possible assignments of finger number 1. For each of
the n nodes of level 2, n-1 descendants are created,
corresponding to the n-1 possible assignments of finger 2,
and the process continues until finger n-1, which may have
only two possible assignments. Fig. 2 represents an example
of these first n levels of the tree for a three fingered robot
gripper, where the second level corresponds to the first
finger (which has 3 possible assignments), and the third level
corresponds to the second finger (2 possible assignments).
The last finger does not appear in the tree as it has only one
possible assignment.

Fig. 2. Example of the n upper levels of an inverse kinematics tree.

Each node in the tree is represented as j

if where the

superscript refers to the parent node and the subscript allows
distinguishing between all the descendants of a certain node

(node j

if is the i-th descendant of the j-th node of the

previous level). More than one superscript is needed if more
levels are added to the tree; the nodes at the first level are
considered child nodes of the root node or node 0. Each path
from the root node to a leaf of this subtree represents a
possible set of finger assignments.
 The remaining m levels of the whole tree correspond to
each of the m DOF of the robot arm and hand. To explain
how these remaining tree nodes are generated, let us start at
one of the leaves of the high level subtree, which will be
considered as a root node for one of the lower level subtrees.
The subtree is generated starting from the most relevant
robot joint. Focusing in this first joint, a partial inverse
kinematics analysis is performed trying to find the joint
values for which a solution exists. Different results can be
obtained:
• The inverse kinematics can only be solved for a certain
joint value. This means that there is no redundancy in this
particular joint, and only one tree node is added at this level,
which will contain the previously computed joint value.
• The inverse kinematics can be solved for a finite
number of different joint values. There is redundancy, and a
node should be added for each of the valid values.
• The inverse kinematics can be solved for infinite
different joint values (ranges of joint values). There is a high
redundancy, and the valid ranges need to be discretized in
order to add as many nodes as valid joint values. The
resolution used should make a justifiable compromise
between accuracy and computational load, and can be
chosen on an application specific basis.

Once the first subtree level has been generated, the
process continues with the next robot joint in the hierarchy.
For each of the nodes created in the previous level, a new
partial kinematics analysis is performed. Once again, the
goal is to detect the values of the second joint for which a
solution exists. Let us assume that the first subtree level
consists of k1 nodes; then, k1 inverse kinematics problems
have to be solved in this step of the algorithm, with m-1
DOF (one of the joints has now a fixed value). Depending
on the results of this analysis, one or multiple child nodes
are added. The process continues with the following levels,
until the lowest joint in the hierarchy is analyzed. The results
of this last analysis correspond to the tree leaves. The
number of tree leaves shows the number of possible
solutions to the inverse kinematics (to the resolution level
used in the discretizations). Even though the whole tree does
not need to be computed (as will be explained in the next
section) it must be stated that generating a full tree does not
represent a very high computationally load as the number of
DOF decreases at each tree level and the redundancy is also
expected to be reduced when going deeper in the tree.

Pseudocode for the lower level subtree generation
algorithm is shown in Fig. 3 (the generation of the upper
level subtree is straightforward) where the kinematics
function is dependant on the particular robot arm and hand
used; the sort_joints function depends on the relevance
criteria used, and the remaining functions are generic.

An example of low level subtree is shown in Fig. 4,
where the joint value corresponding to each node is

q1

q2

qm

q11

q1m1
q211

q2m2

qn1

qnmn

Lower relevance joints Higher relevance joints

root

0
1f 0

2f 0
3f

1
1f 1

2f 2
1f 2

2f 3
1f 3

2f

1186

represented as ki,...,i,i

iq 21 : the superscripts give information

about the parent nodes up to the root (a node at level k will
have k-1 parent nodes) and the subscript allows to
distinguish between child nodes of the same parent.
Different situations are shown in the example: the initial
inverse kinematics (first joint, second tree level) gives
infinite solutions, which have been discretized in k1 values.
Looking at the third tree level, different results are obtained
for the second joint, which depend on the value of the parent
node (parent joint): for the first value of joint 1, there are
infinite solutions for joint 2, which are discretized to k2
solutions; for the second value, only one solution is found;
and for the k1-th value, a finite number of solutions (2
solutions) are valid. Going deeper in the tree, the remaining
joints can take only one value; this is a common situation as
the number of DOF is highly reduced at these tree levels.

sort_joints(relevance)
create_root_node()
TreeLevel := 1
LevelNodes := 1
repeat
 ParentNode := 1
 UpperLevelNodes := LevelNodes
 LevelNodes := 0
 repeat
 ValidJointValues := kinematics(TreeLevel, ParentNode)
 add_child_nodes(ParentNode, ValidJointValues)
 LevelNodes := LevelNodes + count(ValidJointValues)
 ParentNode := ParentNode + 1
 while ParentNode <= UpperLevelNodes
 TreeLevel := TreeLevel + 1
while TreeLevel <= Joints

Fig. 3. Lower subtree generation algorithm.

Fig. 4. Example of the m lower levels of an inverse kinematics tree.

2) Tree search: Once the tree has been generated,

different search strategies can be used to look for the
configuration closer to the examples. The first question to be
answered is how to measure this similarity.
 Let us consider that the user has performed ne grasp
examples of different objects. The goal is, first, to select the
grasp example whose contact points are more similar to
those for which the inverse kinematics needs to be
computed; i.e. to select the most similar grasp type among
the examples. For this purpose, the previously mentioned
local and global features are used; and a simple L2 norm is
computed, with a previous normalization of the feature

values in order to avoid preponderances of features with
higher absolute values. The distance between two different
sets of n points (S1, S2) in the feature space is computed

using a L2 metric, and it is represented as dF in (8), where l̂
and ĝ represent normalized local and global feature values.

The normalization used, which is described in (9) only for
local features in order to avoid redundancy, fits every feature
to the range [0, 1] by subtracting the minimum value and
dividing by the difference between the maximum and the
minimum value. It is a common normalization for
multivariable distance measurement, particularly used in
nearest neighbor classifiers [12]. A different normalization
could have been used, in order to set every feature to have
zero mean and unit variance, with similar results.

() () ()−+−=
==

GL f

i

S

i

S

i

f

i

S

i

S

iF ĝĝl̂l̂S,Sd
1

2

1

2

21
2121 . (8)

()[]
()[] ()[]klminklmax

klminl
l̂

kk

kj

j

S

i

S

i

S

i

S

iS

i
∀−∀

∀−
= . (9)

 Computing the closest example is straightforward once
the distance has been defined; however, and in order to help
the system find solutions for the inverse kinematics, not only
the closest example but the T closest examples are used for
redundancy resolution (T can be adjusted depending on each
particular application).
 Once the T closest examples are selected, the tree can be
searched. The goal is to find in the tree a robot configuration
as close as possible to that of one of the examples. There are
several possibilities, among them the brute force approach
which will perform a full search, either depth-first or
breadth-first. The result will obviously be the best match, but
computational cost will be extremely high. A heuristic
search is proposed instead; it is not guaranteed to find the
best match, but computational load is highly reduced as the
tree is traversed only once from the root node to the selected
leaf.

The heuristic search proposed works as follows: starting
from the root node of the tree, it has to be decided which
child node to select at the first tree level. Child nodes at this
level represent all the possible assignments of finger 1. In
order to select the most similar assignment to those of the
recorded examples, local features are used: features related
to a single contact point. In this case, the space is fL-
dimensional (fL local features), so the distance between two
contact points in the configuration space can be expressed as
dC in (10), using again a L2 metric.

() ()−=
=

Lf

i

p

i

p

iC l̂l̂p,pd
1

2

21
21 . (10)

However, distances in the configuration space and
distances in the feature space have to be considered
simultaneously; when selecting between candidate nodes,
two criteria have to be fulfilled:
• The configuration value of the node (joint value or
assignment) should be as similar as possible to that of one of
the selected examples.

fi
jk

0
1q

0
2q

0
1kq

…
1
1q

1
2q

1
2kq 1

1
kq 1

2
kq

…

11
1q

111
1q

121
1q

11
1

2kq

21
1

kq
12
1q

2
1q

211
1q

21
1q

11
1

1kq

1
1

1kq

21
1

1kq

2
1

1kq

1187

• The local and global features of such example should be
as similar as possible to those of the contact points under
consideration.

Storing not only the most similar example but the T
most similar ones gives us more chances to find a good
solution for the inverse kinematics, but distance computation
becomes more complex. A parameterized distance measure
is proposed, where both effects can be weighted according to
a parameter (α); such distance is represented as dT in (11).
The factors GL ffn +⋅ and Lf have been introduced in order

to obtain equal weights for both effects when the parameter
α is set to 0.5.

()

() ().p,pd
f

S,Sd
ffn

q,q,S,Sd

C

L

F

GL

iiT

2121

21
21

1
⋅

−
+⋅

+⋅
=

=

αα (11)

Once the distance has been defined, its application in
order to select a certain node in the first level of the tree is
straightforward: it suffices to compute the distance between
the T examples and each of the nodes at the first level: the
minimum distance node should be selected.

For subsequent levels, a simpler measure distance has to
be used: once an example has been selected (among the set
of T examples) it should be kept for the remaining levels of
the tree; i.e. the configuration most similar to that of the
selected example will be searched for. So, subsequent
comparisons up to the first n levels of the tree will use the
configuration distance shown in (10). For comparisons at
deeper levels, the distance measure to be used is slightly
different. At these levels the information stored in each node
does not represent finger assignments but robot joint values.
The joint space is m-dimensional (m joints) but only one
joint is considered at a time, so that a 1-dimensional distance
measurement has to be computed; this can be as simple as a
L1 norm computation. Such simple distance measure
between two different values for a certain joint i is defined
as dJ in (12).

() 2121
iiiiJ qqq,qd −= . (12)

The proposed search is extremely fast compared to a full
search and, even though this heuristic search may not find
the optimal match, the hierarchy of joints considered when
building the tree ensures that the possible deviations from
the optimal match will happen at lower levels of the tree,
where the joint values have little relevance.

 At this point, it has to be considered that it is not
necessary to build the complete tree: building and searching
can be performed simultaneously (as the proposed search
strategy never performs backtracking) and child nodes need
only to be computed for the selected nodes of the previous
level. In this way, the whole process can be performed with
a low computational load.

Besides, some intermediate or hybrid solutions can also
be accomplished: up to a certain level, a full search and full
generation of the tree may be performed, and then the
heuristic approach can be used for the lower levels of the
tree. Such solution is selected for the application example
presented in the next section: a full search is performed in

the upper tree levels (those corresponding to the finger
assignments) thus resulting in a set of leaf nodes; and then
heuristic searches are performed in the lower tree levels,
starting at each previous leaf node.

V. APPLICATION EXAMPLE

As an example, the proposed grasp redundancy
resolution method will be used to select the optimum
configuration in a 2D planar problem. A three-fingered
articulated gripper like the one shown in Fig. 5 is selected.
The gripper has 4 DOF: 3 of them translational (opening and
closing of the fingers) and one rotational (abduction of the
two articulated fingers, which are coupled). As it can be seen
in the figure, multiple different grasps can be performed with
such gripper, given three contact points on the object
surface. First, three different finger assignments can be
chosen (rows of the figure) and then, for each assignment it
is possible to reach the contact points with different
abduction angles (columns of the figure).

Fig. 5. Redundancy of the three-fingered gripper used as an example.

The gripper is supposed to be attached to a SCARA

robot arm, which in a 2D representation adds 3 DOF. Fig. 6
shows the planar structure of arm and gripper. The joints are
numbered from 1 to 7, following the hierarchy order chosen
for the application of the algorithm.

Fig. 6. Joints of the example robot arm and hand.

The more relevant joint has been considered the one that
controls finger abduction (only one joint as abduction is
coupled in both articulated fingers). Even though there are
other joints closer to the contact points, this is the one that
better represents the kind of grasp being performed. Next,
the translational gripper joints: no difference in relevance is
found in them, so they have been randomly ordered. After

7
6 3

1
4

5

2

1188

the gripper joints, the SCARA arm joints follow in order of
their distance to the contact points.

Fig. 8. Object database used for example generation.

 In order to generate grasp examples, a simulation
environment has been developed. Different objects are
presented to the user, who should operate the robot arm and
gripper in order to grasp each object. Once an object has
been grasped, both the contact points and the robot joint
values are stored. The database used for the experiments is
shown in Fig. 8: these are the objects presented to the user
and also the objects the system will have to grasp
autonomously once trained. In each experiment, a total of 50
randomly selected objects are presented to the user, who
performs grasps for all of them.

Once the examples recorded, the next step is the
generation of the tree. A hybrid approach has been used,
with full tree generation for the assignment levels of the tree
and heuristic tree generation for the joint levels.

The assignment tree is quite simple due to the gripper
being considered: once the first finger is assigned to a
certain contact point, the other two fingers have fixed
assignments. The result is an upper subtree with only three
leaves.

Fig. 9. Joint subtrees for the example application.

For each upper subtree leaf, a heuristic generation of the
joint subtree is performed, starting with joint 1. Let us call j1
the angular value of joint 1. Without getting into geometry
details, depending on the set of contact points a single
solution j1=0 or a range of solutions j1>0 can be found.

Depending on that result, joint 2 will have infinite valid
values (when j1=0) or a single value (when j1>0). The
remaining joints will be restricted to a single value except
those of the SCARA robot arm which can reach the desired
endpoint with elbow up or elbow down configurations. The
two possible subtrees are schematically shown in Fig. 9.

The computation of the trees and the search process
performed simultaneously take about 0.3 sec. on a standard
PC (256 MB RAM, 1.7 GHz) when the range of motion of
the different joints is discretized in 20 values.

VI. CONCLUSIONS

Robot grasp synthesis requires efficient redundancy
resolution techniques. Previous approaches to redundancy
resolution are not devoted to grasp synthesis, so they do not
consider specific problems, like finger assignment.

A tree based representation of the inverse kinematics
like the one proposed can handle both the assignment
redundancy and the joint redundancy, and allows fast
searches to be performed. The experimental results obtained
show the validity of the approach.

The use of similarity to the examples given by the user
as a way to solve the redundancy is a novelty and has many
potential fields of application, among them humanoid robots.
The method proposed for measuring similarity (joint
hierarchy and inverse kinematics tree) is specific to grasping
processes, but can be easily adapted to other robot
operations.

Future work is focused in the extension of the presented
technique to redundancy resolution in path planning.

REFERENCES

[1] C. Schaeffer and T. May, “Care-o-bot: a system for assisting elderly or
disabled persons in home environments,” in Assistive Technology on
the Threshold of the New Millennium. C. Bhler and H. Knops, Eds.
IOS Press, 1999, pp. 340-345.

[2] R.J. Anderson, “Autonomous, teleoperated, and shared control for
robot systems,” in Proceedings of the 1996 IEEE Int. Conf. on
Robotics and Automation, 1996, pp. 2025-2032.

[3] V.D. Nguyen, “The synthesis of stable force-closure grasps,” Technical
report AI-TR-905, MIT Artificial Intelligence Laboratory, 1986.

[4] J. Cornellá and R. Suárez, “On 2D 4-finger frictionless optimal
grasps,” in Proc. of 16th IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, Las Vegas, 2003, vol.3, pp.3680-3685.

[5] D. Schwammkrug, J. Walter and H. Ritter, “Rapid learning of robot
grasping positions,” in Proc. 7th Int. Symp. Intelligent Robotics, 1999,
pp. 149-155.

[6] W.A. Wolovich, H. Elliot, “A computational technique for inverse
kinematics,” in Proc. 23rd IEEE Conference on Decision and Control,
1984, pp. 1359-1363.

[7] J. Baillieul, “Kinematic programming alternatives for redundant
manipulators,” in Proc. IEEE Int. Conf. on Robotics and Automation,
1985, pp. 722-728.

[8] Y. Nakamura and H. Hanafusa, “Inverse kinematics solutions with
singularity robustness for robot manipulator control,” in Journal of
Dynamic Systems, Measurement and Control, 108, 1996, pp. 163-171.

[9] G.S. Dordevic, M. Rasic and R. Shadmehr, “Parametric models for
motion planning and control in biomimetic robotics”, in IEEE
Transactions on Robotics, in press (paper no. W03-017R).

[10] N.S. Pollard, “Synthesizing grasps from generalized prototypes,”
Proc. of the IEEE Int. Conf. on Robotics and Automation, 1996, pp.
2124-2130.

[11] C. Fernandez, A. Vicente, O. Reinoso and R. Aracil, “A decision tree
based approach to grasp synthesis,” in Proc. Int. Conf. on Intelligent
Manipulation and Grasping, 2004, pp. 486-491.

[12] I.H. Witten and E. Frank, “Data mining,” Morgan Kaufmann, 2000.

...
...

7

5

3

1

6

4

2

Joint number

subtree a subtree b

1189

