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Abstract 
A generic learning based approach to robot grasp 
synthesis is presented. This generic approach can cope 
with different robot hands and different kinds of sensing 
information, as a difference with previous learning 
based approaches focused mainly on two jaw grippers 
and 2D information of the object to be grasped. 
The proposed methodology structures the grasp 
synthesis in four steps. First, the outer points of the 
object (2D or 3D) are filtered using local information in 
order to select those valid as contact points, by means of 
a decision tree inferred from the examples. In a second 
step, all the sets of valid reachable points are computed 
taking into consideration the robot hand used. The third 
step selects the best set among all the previously 
computed so giving the optimum contact points for the 
grasp: a decision tree and a further nearest neighbour 
test working with global information are used for this 
purpose. In the last step, a search is performed in order 
to find the best hand configuration among those capable 
of reaching the optimum contact points. 
Some experimental results are presented, showing how 
the system performs well after few training examples. 

1 Introduction 
Unlike traditional robotic applications, where robots 

perform repeatedly the same tasks under exactly the 
same conditions, new robotic applications place robots 
in unstructured changing environments and performing 
several different operations. In these situations, the robot 
must decide by itself how to grasp each object or tool 
depending on its geometry, its mass distribution, the 
operation to be performed with it, the environment, the 
gripper configuration, etc. 

At present, robotic applications working in non 
structured environments and performing different 
operations with a variety of tools are usually performed 
through teleoperation. The tasks involved are usually 

very complex and are performed in dangerous or hostile 
environments. Some examples can be found in nuclear 
industry, underwater tasks, live power line maintenance, 
etc. [1][2]. Even though the robot is controlled by an 
human operator, partial automation of tasks in 
teleoperated environments [3] or collaborative control 
[4] (where the robots do not act as mere slave devices) 
are challenging research fields, and one of the tasks 
suitable for being automated is object grasping. 

Apart from teleoperation, there is another field of 
application of robotics where robots have to work in 
unstructured environments and handling different parts 
and tools: service robotics. The International Federation 
of Robotics [5] defines a service robot as ‘a robot which 
operates semi or fully autonomously to perform services 
useful to the well being of humans and equipment, 
excluding manufacturing operations’. Some examples 
can be found in the Care-O-Bot [6] whose task is to help 
elderly or mobility impaired persons in their daily life; 
or the Manus-arm [7] which is side-mounted on a 
wheelchair and is able to open doors, handle food or 
drinks, etc. These robots are not just research 
prototypes: Manus-arm is a commercially available 
product with more than 100 units already working. 
Other field of application of service robots is 
entertainment where the robot QRIO [8] is the latest 
example of robot designed to interact with humans. A 
complete list of service robots can be found in [9]. 

All the mentioned examples of teleoperation and 
service robots share a common problem: the need to 
grasp different objects in unstructured environments. In 
this paper, a learning based approach to grasp 
automation is presented. The goal is to find a learning 
based approach generic enough in two aspects: first, in 
the kind of robotic hand or gripper used; and second, in 
the kind of sensorial information available. So, the same 
structure should be able to synthesize grasps in the 
simplest situation: a two jaw gripper and 2D contour 
information of the object to be grasped; and in very 
complex situations: multifingered robot hands and 3D 



information of the object to be grasped obtained from 
multiple range sensors. 

As a difference with non learning based methods, a 
learning based system is able to imitate the user 
behaviour [17]. In this sense such grasp automation 
systems can learn to grasp an object by its handle from 
the examples given by the user even if such grasp is not 
optimal in terms of stability, force closure or any other 
criteria. 

2 Previous approaches  
Previous approaches to robot grasp synthesis can be 

grouped in two categories: 
• Those not being learning based.  Among these, there 
are several alternatives: synthesizing grasps meeting the 
force closure condition [10][11], synthesizing optimal 
grasps according to different quality criteria [12][13], 
synthesizing grasp starting from generalized prototypes 
[14], etc. There are two main drawbacks common to all 
these approaches: first, they rely on a precise knowledge 
of the 2D or 3D geometry of the object to be grasped, 
which is not available in a real grasping scenario; and 
second, they cannot cope with extra information apart 
from the geometry of the object (i.e. they can not 
consider the operation to be performed with the object) 
Apart from that, most methods are not feasible in a real 
time application as they are computationally intensive. 
• Those being learned based. There are few such 
approaches, among them the one proposed by Kamon 
[15] or the one proposed by Schwammkrug [16]. These 
approaches are designed specifically for just one 
grasping situation –usually simple- where a particular 
two or three jaw gripper grasps an object taking into 
consideration only 2D information of its contour. In this 
sense, they are not general enough. 

The review of previous approaches leads us to 
establish a set of requirements that a grasp synthesis 
method should meet in order to be applicable in a real 
scenario: 
• It should not be computationally expensive. 
• It should not require a complete knowledge of the 

2D or 3D geometry of the objects. 
• It should consider the operation to be performed 

with the object. 
• It should be applicable to different robot hands and 

different grasping scenarios (2D, 3D). 

3 Proposed approach  
A learning based generic approach is proposed, 

where the training examples can be obtained by 
teleoperation or through a simulation environment (the 
goal is to learn from human demonstration). 

Let us consider a generic n finger grasping hand 
with an undefined mn number of joints per finger. A 
certain grasp of an object can be represented by the n 
contact points in the object plus the configuration of 
each finger (in general different configurations can reach 

the same contact points, the grasps not being 
equivalent). If the robot hand is attached to the wrist of 
an m DOF robot arm, then these m DOF are also 
relevant for the grasp. Equation 1 represents the set of n 
contact points, where S is the outer surface or contour of 
the object to be grasped, k=2 on a 2D scenario and k=3 
on a 3D one; and equation 2 represents the whole set of 
configuration parameters both for arm and hand. 
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This generic robot arm and hand is depicted in figure 1. 

 
Figure 1: configuration parameters for arm and hand 

 
In order to be able to cope with all kinds of grasping 

scenarios, the grasp synthesis is performed in four steps, 
which are described in the following paragraphs. 
 
1. The first step consists on a filtering of the possible 
contact points in order to select only those appropriate 
for placing a finger on them. The set of all possible 
contact points includes all the contour points (2D) or 
surface points (3D) of the object. The filtering criteria 
are obtained from grasps examples provided by the user 
and by means of machine learning techniques. In the 
current implementation of the approach, a decision tree 
is generated from the examples to infer the filtering 
rules; and the data supplied to the decision tree 
algorithm includes the distance from each point to the 
center of mass of the object and a multirresolution 
measure of local convexity, as described in our previous 
work [17]. As a result of this first step, a subset of z’ 
valid points is extracted from the original z contour 
points, where z’≤ z. Only local data is processed in this 
step. 
 
2. The second step computes all the sets of n grasping 
points reachable by the robot hand under consideration. 
This step is not learning-based and it is very dependant 
on each particular robot hand. Complexity increases 
with the number of fingers n; num in equation 3 
represents the number of different sets to check. 
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3. The third step is again learning based and its purpose 
is to select, among all the sets of reachable points, the 
best one according to the examples provided by the user. 
In the present implementation of the approach, two 
machine learning techniques are used: first, a decision 
tree is inferred from the examples to obtain validity rules 
and reduce the number of candidate sets; and then all the 
remaining candidate sets are compared with the stored 
examples using nearest neighbour techniques in order to 
select the most similar to one of the example grasps. 
Both algorithms work on the same data (global data): a 
distance measure from the center of mass of the object to 
the center of the convex space of all contact points 
(which will be used as a reference point) and 
multirresolution measurements of the angle between the 
normal at the contact point and the line directed to the 
reference point. The experiments carried out have shown 
that these data are enough to characterize a certain 
contact point set. The output of this step is the best set of 
n contact points. 
 
4. The last step, once the contact points have been 
selected, deals with the selection of the best arm and 
hand configuration among those capable of reaching the 
n contact points. This step is again very dependant on 
the particular robot hand and is performed using a 
weighted version of the nearest neighbour algorithm, 
where higher weights are given to those joints closer to 
the contact point. In some simple situations, as those 
where the robot hand is a simple two jaw gripper, there 
is only one configuration capable of reaching a certain 
set of contact points, so step 4 can be avoided. 

4 Computational complexity  
Searching for the best set of contact points among 

all the outer points of an object and considering both 
local (related to a certain point of contact) and global 
(related to a set of contact points) data can be 
computationally very expensive. The four step approach 
proposed highly reduces the computational load. 

A direct brute force approach will check both local 
and global data for all combinations of n contact points 
from the whole set of z surface points. Considering that 
local data is not recomputed several times for the same 
contact point, equation 4 reflects the total computational 
cost, where cL represents the cost of local data 
computation and cG represents the cost of global data 
computation. 
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The proposed approach computes local data for all 
the z points but global data for only z’ points (all but the 
ones filtered in the first step); the total cost is reflected 
in equation (5) 
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Both approaches perform only z local data 
computations, but the real problem is the number of 
global data computations which grows rapidly with the 
number of contact points. The complexity reduction in 
global computations offered by the proposed system can 
be expressed as a ratio r, as equation 6 shows. In this 
equation, the number n of robot fingers (which usually 
can vary from 2 to 5) has been considered neglectible 
with respect to the number of surface points before or 
after the filtering (z or z’). 

( )
( )

n

z
z

!nz!z
!nz!z

n
z
n
z

r 







′
≈

−′
−′

=








 ′










=    (6) 

The ratio shows a complexity reduction ratio which 
is dependant on the degree of filtering of the first step; 
and whichs grows rapidly with the number of fingers. 
That is exactly the desired behaviour, as the 
computational complexity only becomes a problem 
when the number of fingers grows. Experimental results 
show that the degree of filtering of the first step reduces 
the number of surface points from 10 to 100 times, thus 
resulting in a complexity reduction that ranges from 10n 
to 100n. 

5 Knowledge representation 
Steps 1 and 3 of the proposed approach are learning 

based, that means that some examples are provided by 
the user and the system infers behaviour rules from 
them. In order to choose a knowledge representation 
method for such rules, both a quantitative and a 
qualitative analysis have been performed. 

Concerning the quantitave analysis, steps 1 and 3 
can be considered as classification problems: step 1 
classifies surface points according to convexity and 
distance measurements; and step 3 –in a first instance- 
classifies sets of contact points according to similar 
measures. In order to perform a comparison, a database 
of 400 example grasps was generated. Among them, 200 
were correct grasps performed by the user and the other 
200 were wrong grasps generated randomly (random 
generation of bad examples is fully detailed in our 
previous work [17]). Two different tests were performed 
to check the classification accuracy of each method. The 
first test was a 10 fold cross validation using all the 400 
examples (90% were training examples and the 
remaining 10% were test examples). 40 different tests 
were performed with each classifier in order to obtain 
statistical measures of classification accuracy. The 
classifiers used for the comparison were: multilayer 
perceptron (MLP), nearest neighbour (NN), decision 
trees (DT), and the naive Bayes classifier (NB). Each 
classifier was tuned to obtain the maximum performance 
over the examples, and the results in terms of percentage 
of correct classifications and standard deviation are 
shown on table 1. The results are also represented in 



figure 2 assuming a normal distribution for the data and 
adjusting its mean and standard deviation to those 
obtained in the tests. 

 
Classifier Correct classif. (%) Stand. Deviation 

NN 94.57 0.86 
DT 91.25 0.96 

MLP 88.7 1.38 
RBF 83.19 2.24 
NB 79.0 1.73 

Table 1: cross validation results 
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Figure 2: normal distribution of results 

 
The results show clearly that nearest neighbour 

techniques give the better classification accuracy, 
followed by decision trees and MLP. 

The second test compares the performance of the 
different classifiers according to the number of training 
examples used. Results were obtained for a number of 
training examples ranging from 20 to 380 and are shown 
(averaged after 40 repetitions) on figure 3. 
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Figure 3: performance vs. training examples 

 
This second test gives similar results: the best 

classification rates are obtained with nearest neighbour 
method followed by decision trees and MLP. 

Concerning the qualitative analysis, decision trees 
are considered the best option as the model generated is 
readable and thus can be checked by the user if 

necessary (nearest neighbour techniques do not infer a 
model at all and MLP generates an unreadable model). 
Apart from that, decision trees are very robust to noise 
in the training data [18][19], and results are low 
dependant on parameter setting (the well known C4.5 
algorithm [20] was used to generate the decision trees) 
as a difference with MLP where the number of hidden 
units is a critical parameter. 

As a result of both quantitative and qualitative 
analysis, the option chosen was to use decision trees for 
step 1 and the first part of step 3 (selection of valid sets 
of contact points) and nearest neighbour techniques for 
the second part of step 3 (the valid set closer to the 
examples is chosen as the optimum set of contact 
points). 

6 Experimental results 
A simulation environment has been developed in 

order to check the behaviour of the proposed system. In 
this environment the user controls a robot arm and hand 
with a joystick in order to give grasping examples to the 
system. For this purpose, different objects are presented 
in the working area of the robot and the user must guide 
the robot to grasp each object. All the training examples 
are stored and, after a selectable number of examples, 
the system computes the decision trees and is able to 
perform grasp autonomously. 

At present, the simulation environment is restricted 
to a SCARA robot (2D grasps) and a two jaw gripper. 
Figure 4 shows the full robot workspace and an object to 
be grasped, while figure 5 zooms into the details of the 
grasping of an object. 

 

 
Figure 4: simulation setup 

 
In order to perform the tests, a database of 24 

different 2D objects has also been created. The complete 
set of objects is shown on figure 6. Several objects are 
mere geometrical shapes and should be grasped 
according to stability, force closure or similar criteria. 
Other objects, like the screwdriver, the pan, the 
corkscrew or the bottle are examples of grasps related to 
the operation to be performed with the object and 



therefore those grasps cannot be computed according to 
the previous criteria; the goal is to infer rules from the 
examples given by the user as to be able to grasp these 
particular objects correctly. 
 

 
Figure 5: object grasping with the simulator 

 

 

 

 

 

 
Figure 6: 24 object database 

 
For the tests, an object is excluded from the 

database and the remaining objects are presented 
randomly to the user, in order to register grasping 
examples. After 40 examples (some objects are 
presented twice or even more than twice to the user) the 
decision trees are computed and the system has to 
synthesize the grasp of the excluded object. 

The first experimental tests were performed only 
with those objects whose grasps are not operation 
dependant, and some results are shown on figure 7. For 
each object, there are three images: in the first image the 
valid contact points (output of step 1 of the algorithm) 
are marked on the contour of the object; in the second 
image the valid sets of contact points (sets of two points 
because a two jaw gripper is used) are marked: this is an 
intermediate result of step 3; and in the third image only 
the selected pair of contact points is shown: this is the 
final result of step 3 and –for a two jaw gripper- the final 
result of the algorithm. 

The first experiments show a good behaviour of the 
system with previously unseen objects after only 40 
grasp examples. 
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Figure 7: results with common objects 

 
For the second set of experiments, all the objects in 

the database were used. That means that the user gave 
examples of merely geometrical grasps (those performed 
taking into account the geometry of the object) mixed 
with examples of operational grasps (those related to the 
operation to be performed with the object, e.g. a pan is 
grasped at its handle). After 40 examples, the decision 
trees were computed and the system was ready to 
synthesize grasps autonomously. The results with 
common, geometrical grasps were not affected to a high 
extent: the grasping points chosen autonomously were 
different to those of the first experiment but were still 
valid. Concerning the operational grasps, the results 
were computed in a slightly different way: in this case 
the object to be tested was included in the set given to 
the user to perform example grasps. When the program 
started working autonomously it became clear that the 
system had learned to perform operational grasps. 
Figure 8 shows the results with the corkscrew and the 
screwdriver as an example: it can be seen that both 
objects are grasped at their handles. Similar results are 
obtained with the other operational grasps: the bottle and 
the pan. 

At present, the system is being installed on a 
physical experimental setup. For this purpose, a 
Mitsubishi RH-5AH SCARA robot equipped with a two 
jaw pneumatic gripper is being used. A top view 
stationary camera is in charge of acquiring the images of 
the objects, and a uniform background is used in order to 
avoid problems in contour extraction. Results with this 
experimental setup will be available soon. 
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Figure 8: results with operational grasps 

7 Conclusions 
Robot grasp synthesis techniques are applicable for 

partial task automation in teleoperation and service 
robotics. 

Learning based grasp synthesis outperforms non 
learning based methods as it allows taking into account 
the operation to be performed with the object to be 
grasped. 

The four step algorithm proposed is general enough 
to work with simple or complex robot hands and to 
perform both 2D and 3D grasps. In this sense, it can be 
used as a general frame where each step can be modified 
depending on the requirements. 

An algorithm like the one proposed can work in real 
time due to the reduction in computational complexity 
obtained by decoupling local and global characteristics 
of the grasps. 

A combination of decision trees and nearest 
neighbour techniques has been selected for the learning 
based steps of the algorithm, because of its high 
descriptive power and good classification performance. 
Other classifiers could be used without modifying the 
structure of the algorithm. 

Future work includes the improvement of the 
simulation environment in order to cope with more 
complex robot hands and the extension to 3D grasps, but 
the main structure of the algorithm will remain 
unchanged.  

References 
[1] L. Parker, J. Draper, "Robotics applications in 
maintenance and repair", Handbook of industrial 
robotics 1023/1036, Wiley Publishers, 1999. 

[2] R. Aracil et al. "Advanced teleoperated system for 
live power line maintenance" 1st IFAC conference on 
telematics applications in automation and robotics, 
Weingarten, 2001. 
[3] L. Basañez, "Actualidad y perspectivas de la 
robótica", Producción mecánica, 5, Metalunivers, 2003. 
[4] T. Fong, C. Thorpe, C. Baur, "Multi-robot remote 
driving with collaborative control", IEEE Transactions 
on Industrial Electronics, 50(4), 2003. 
[5] http://www.ifr.org/ 
[6] B. Graf, M. Hans, J. Kubacki, R.D. Schraft, "Robotic 
Home Assistant Care-O-Bot II", Proc. of the  2nd Joint 
Meeting of the IEEE Eng. in Medicine and Biology 
Society and the Biomedical Eng. Society, Houston, 2002. 
[7] H. Kwee et al. "The Manus wheelchair-borne 
manipulator. System review and first results", IARP 2nd 
Workshop on medical and healthcare robotics, 1989. 
[8] http://www.sony.net/SonyInfo/QRIO 
[9] http://www.service-robots.org 
[10] V.D. Nguyen, "The synthesis of stable force-
closure grasps", Technical report AI-TR-905, MIT 
Artificial Intelligence Laboratory, 1986. 
[11] E. Toth, "Stable object grasping with dextrous hand 
in three-dimension", Periodica Polytechnica Ser. El. 
Eng. vol. 43, No. 3, 1999, pp. 207-214. 
[12] C. Ferrari, J. Canny, "Planning optimal grasps", 
Proc. IEEE Conf. on Robotics and Automation, Nice, 
1992. 
[13] J. Cornellá, R. Suárez, "On 2D 4-finger frictionless 
optimal grasps", 16th IEEE/RSJ International 
Conference on Intelligent Robots and Systems, Las 
Vegas, 2003. 
[14] N.S. Pollard, "Synthesizing grasps from generalized 
prototypes", Proceedings of the IEEE International 
Conference on Robotics and Automation, Minneapolis, 
1996. 
[15] I. Kamon, T. Flash, S. Edelman, "Learning to grasp 
using visual information", Proc. IEEE Int. Conf. on 
Robotics and Automation, Minneapolis, 1996, pp. 2470-
2476. 
[16] D. Schwammkrug, J. Walter, H. Ritter, "Rapid 
learning of robot grasping positions", Proc. 7th Int. 
Symp. Intelligent Robotics, 1999, pp. 149-155. 
[17] C. Fernández, M.A. Vicente, C. Pérez, O. Reinoso. 
"Learning to grasp from examples in telerobotics", Proc. 
3rd Int. Conf. Artificial Intelligence and Applications, 
Benalmádena, Spain, 2003. 
[18] T.M. Mitchell, Machine learning, McGraw-Hill, 
1997. 
[19] D. Michie et al. Machine learning, neural and 
statistical classification , Ellis Horwood, 1994. 
[20] J.R. Quinlan, C4.5 : Programs for machine 
learning , Morgan Kaufmann, 1993. 
 
 


