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Abstract. Two feature extraction techniques (PCA/ICA) for recognition of 3D 
objects from appearance are compared with respect to different recognition ap-
proaches (universal/object subspaces). A class separation ratio is defined, and 
several recognition experiments are performed using the COIL-100 database. 
The results show that both techniques produce similar recognition rates when 
universal subspaces are used; but, when object subspaces are used, ICA repre-
sentation greatly outperforms the earlier PCA technique due to its ability to 
separate classes.  

1   Introduction and Motivation 

Object recognition is a fundamental ability of any visual system.  Recognizing real 
three-dimensional objects in controlled backgrounds or scenes is quite easy provided 
an adequate 3D visual model of the object is available. However, non-controlled back-
grounds make it almost impossible to apply such model-based techniques because in 
these situations it is very difficult to segment the target object from the scene.  Appear-
ance-based recognition approaches are a powerful alternative to model-based tech-
niques when it is difficult to obtain geometrical models of the objects [1] and when the 
images have non-controlled backgrounds [12] [9]. First appearance-based systems  
found in the literature used principal component analysis (PCA) as a feature extraction 
technique to reduce the dimensionality of the object classes or models [7][10], while 
recently the use of the independent component analysis (ICA) for feature extraction is 
preferred by some authors [2]. The performances of both techniques have not been 
compared in terms of their applicability to object recognition and sometimes contradic-
tory conclusions have been drawn. The aim of this paper is to clarify the advantages 
and drawbacks of both techniques as feature extractors in object recognition systems. 

 



In [7] Murase addresses the problem of automatically learning object models for 
recognition and pose estimation. PCA is used and the objects are represented in two 
different eigenspaces: the universal eigenspace, computed using an image set of all 
objects of interest, and the object eigenspaces, computed using only images of an 
object. The universal eigenspace is best suited for discriminating between objects, 
whereas the object eigenspace is better for pose estimation. In this paper the structure 
of the PCA-based Murase recognition system is used to perform the comparison of 
ICA and PCA approaches with the COIL100 library [8]. The results presented 
throughout the paper show how ICA clearly outperforms PCA when using object 
subspaces. The reason can be found in its class separation capability, as stated by 
Bressan [3].  

2   Recognition of 3-D Objects from Appearance 

The appearance of a 3D object in a 2D image depends on its shape, its colour, its pose 
in the global scene, its reflectance properties and the sensor and illumination charac-
teristics. An object image may be considered as a vector of pixels where the value of 
each entry in the vector is the greyscale (or colour) value of the corresponding pixel. 
For example, a NxN image may be unwrapped and treated as a vector of length N2.  
The image is said to sit in N-dimensional space, which is considered to be the original 
space of the image. In appearance-based systems the whole object image is projected 
to a lower dimensional space using different techniques or subspaces, the most fre-
quently used is the subspace created by the eigenvectors of the covariance matrix of 
the training images (or PCA) [7] [10], another common subspace is the one created by 
the basis vectors obtained using Linear Discriminant Analysis or the subspaces com-
puted by Independent Component Analysis [6].  

2.1 Constructing the Object Subspaces 

Two different representations are used: namely the universal subspace and the object 
subspaces following Murase nomenclature [7]. Each object of interest can be repre-
sented or modelled using an object subspace. This subspace is constructed from a set 
of training images belonging to different views of the same object. The set of M train-
ing images, mx

r
, is defined by jG : 
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and there are as many sets as different objects of interest. With mx

r
, we denote a 

vector image that groups the  three color image matrices. Each image, mx
r

, from the 
training set is filtered by the feature channel selected to model the object: 
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Typical feature channels are: the image in a modified colour space,  the image his-

togram, the border image, or special areas from the image grouped in feature windows 
(local image features) [2][9]. Once the feature channel is selected, the new set of M 
training feature vectors,  'G j is defined: 
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The object subspace, W ,  is computed from 'jG  for each object j, extracting the 

principal components (PC) or the independent components (IC). After that, all the 
training image features are projected in that subspace creating an object representa-
tion, named as manifold. That projection can be represented as: 
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where W is the matrix containing the PC’s or the IC’s from each object. 
 

2.2 Constructing the Universal Subspace 

The universal subspace is constructed from a set of training image features belonging 
to different objects. The set of J training images is defined by U : 
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The universal subspace, W ,  is also computed by PC or IC extraction. But in this 

case there is only one subspace for all the objects. So, the model of each object is 
composed of its views projected in the universal subspace. 

3. Selection of Features Using Linear Transformations 

3.1 PCA Approach 

PCA subspace or eigenspace is computed by finding the eigenvectors of the covari-
ance matrix created from the set of training vectors [4]. The eigenvectors correspond-
ing to non-zero eigenvalues of the covariance matrix represent an orthonormal basis 
that projects the original vectors (of length N2) in the M-dimensional space (M<<N2). 



So in PCA approach, W  is the matrix containing the eigenvectors. In this work the 
snapshot method [10] has been used to compute the eigenspace in order to avoid the 
high dimensionality of the original covariance matrix. PCA enables us to create and 
use a reduced set of variables. A reduced set (the classes obtained from the training 
images) is much easier to analyze and interpret than the original variables (the training 
images themselves). 

3.2 ICA Representation 

The ICA of an N2 dimensional random vector is a linear transform that minimizes the 
statistical dependence between its components. This analysis has a great number of 
applications such as data analysis and compression, blind source separation, blind 
deconvolution, denoising, etc.  

If the random vector we wish to represent through ICA has no noise and is zero-
centered, the ICA model can be expressed as:  
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where x
r

is the random vector representing our data, s
r

is the random vector of inde-
pendent components with dimension M ≤ N2, and A  is the mixture matrix. The pseu-
doinverse of A, represented by W, is called the projection matrix and it provides an 
alternative representation of the ICA model: 

.sx·W
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Various objective functions have been proposed for the estimation of the projection 
matrix such as nongaussianity, likelihood, mutual information, and tensorial methods 
[6]. In this paper the FastICA [5] method is used. FastICA estimates the whole de-
composition by minimizing mutual information, and estimates the individual inde-
pendent components as projection pursuit directions. FastICA uses PCA as a pre-
processing step for data whitening. 

4   Experimental Results with the COIL-100 

The experiments are performed with object images from the COIL-100 database [8]. 
The selected feature channel to carry out the comparison has been the I component 
(HIS colour space). 

4.1 Comparing Universal Subspaces 

In order to compare the performance of PCA and ICA universal subspaces were com-
puted from the main image of each object in the database (10 to 100 object sets were 
used in different experiments). The rest of the images were used as test examples and 
the classifier selected was the nearest neighbour (k-NN with k=1 and  L2-norm as 



distance measure). In Fig. 1 the experimental results from both feature selectors are 
shown: both techniques performed almost equally. Fig. 1a shows the recognition rates 
obtained using both ICA and PCA when only 10 components are used to represent 
each subspace. As the number of different objects increases, there is a reduction in 
classification accuracy with both systems. In Fig. 1b the influence of the dimensional-
ity of the subspace is shown: all experiments are carried out with 20 different objects, 
and the number of components varies from 2 to 20. As expected, the recognition rate 
grows as the dimensionality of the subspace increases. Experiments performed with 
bigger object sets gave similar results. 

The universal subspaces perform well with symmetrical objects, as all the views of 
an object are very similar; but it produces disastrous results with quite non-
symmetrical objects.  This is shown in Fig. 2: the symmetrical objects, (2, 4, 5, 18, 24, 
25, 26, 30, 32, 33, 34, 35, 47, 50,  56, 58, 61, 64, 70, 72, 83, 86, 87, 88, 94, 95),  give 
a recognition rate of 100% in both types of subspaces whereas non-symmetrical ob-
jects are hardly recognized. We can also notice than ICA works only slightly worse 
than PCA as there are 26 symmetrical objects in PCA’s case and just 21 in ICA’s (5, 
18, 24, 25, 26, 30, 32,  34, 35, 47, 50,  56, 58, 61, 70, 72, 83, 86, 87,  94, 95).  These 
similar results were expected as ICA representation is based on a dimensionality re-
duction obtained by using PCA in the pre-processing step of the FastICA algorithm 
and the further statistical independence forced by ICA does not necessarily improve 
the results. 

As a conclusion, universal subspaces with a distance measure can be used to recog-
nize objects when they are quite symmetrical or they always show the same view to 
the camera. Universal subspaces are mostly used in face recognition systems with the 
processed frontal face (mugshots) as the training images. 

If a more complex classifier is used instead of a distance measure, the recognition 
rates can be improved even with non-symmetrical objects; on the other hand, this 
requires the use of more training views in the learning step [12]. 

 

 
(a) (b) 

Fig.1. Comparing universal subspaces: Fig 1.a  shows ICA and PCA recognition rates using 
just 10 dimensions,  and Fig 1.b is referred to  the influence of the subspace dimensionality. 

 



 

(a)                                                                               (b) 
 

Fig. 2a. Symmetrical objects in PCA subspace. Fig. 2b. Symmetrical objects in ICA subspace.  

4.2 Comparing Object Subspaces 

Object subspaces generated with PCA were used by Murase in [7] in order to find out 
the pose of the object and not to identify it, but they are also useful for recognition as 
described in [11]. Even more, if ICA is used instead of PCA, this technique greatly 
outperforms the universal subspace method as the ICA manifolds of  each class are 
more apart from each other. The reason can be found in the close relationship existing 
between sparse coding and ICA: sparse coding  is a coding of the data such that only a 
few components of the code will be significantly active (nonzero) In Fig. 3a it is pos-
sible to observe the high sparsity in the ICA manifolds (each object fires a certain 
component, while the remaining ones are kept close to zero). PCA manifolds do not 
represent a sparse coding as each component is not associated to a certain object; the 
components are instead ordered in decreasing values of their variance in the training 
data (Fig. 3b). 

In order to compare the two approaches a class separation ratio has been defined. 
This ratio represents the degree of separation of a certain class, and it can be ex-
pressed as follows:  

 

.
)Dmin(
)dmax(

log
j

j
j












=α                                                   (8) 

 
where jα is the class separation ratio for class j, jd is the L2 norm between two pro-

jection vectors belonging to manifold j (distances between elements of the same class) 
and jD is  the L2 norm between two projection vectors, only one of them belonging to 

manifold j (distances between elements of different classes).  
 



  

(a)                                                                                       (b) 

Fig. 3a. Values of the ICA projections over an 8 component subspace (object 4). The sparsity 
of the code is evident: all but one of the components are close to zero. Fig. 3b. Values of the 
PCA projections over a 7 component subspace (same object). It can be seen that the compo-
nents are ordered in decreasing values of variance. 

 
High jα  values represent easily separable classes, and particularly, when jα is 

greater that zero, the classes can be trivially separated by any simple classifier. The 
class separation ratio for ICA and PCA object subspaces for the whole library  is 
shown in Fig. 4a : most of the ica-classes from the COIL-100 are above or close to  
the threshold 0j =α . However the pca-classes are in almost all objects below this 

threshold, meaning that they are not so easily separable.  
This fact is also shown in Fig.5a and 5b., where each approach is tested with a dif-

ferent number of training examples (from 2 to 24). It can be seen that PCA class sepa-
ration ratio falls below the 0j =α  threshold even with 24 training examples; whereas 

the ICA class separation ratio is always higher than the PCA one and even more, only 
4 components are required to trivially separate some of the objects. Several classifica-
tion experiments have been performed using a linear perceptron, a k-NN rule and a 
naive Bayes classifier, and the recognition rates obtained confirm the results: with just 
a few components (8 o more) ICA obtains recognition rates close to 100%, whereas 
PCA does not reach a 100% classification rate even with 24 components. 

5 Conclusions and Future Work 

Two main conclusions are drawn from this work: 
− The universal subspace technique with a distance based classifier is only appli-

cable to symmetrical objects or objects that always present the same view to 
the camera. In this scenario ICA does not improve PCA results. 

− The object subspace technique benefits from using ICA instead of PCA. ICA 
produces a reduced model of the object due to the sparse coding of the CI’s; 



even more, class separation is much more relevant even with only a few com-
ponents. 

 
An ICA-based object subspace technique allows extremely compact representations 

of the objects. This fact makes this technique suitable for the combination of different 
feature channels in order to improve the recognition capability of the visual system. 
Future works will consider simultaneously color, shape and texture information com-
bined to get an almost invariant representation of the object, useful for object recogni-
tion in non-controlled backgrounds. 
 

 
(a)                                                                                (b) 

Fig. 4a. Class separation ratio for ICA and PCA object subspaces for the whole library. The 
subspaces are computed using just 8 training images. Fig. 4b. In this figure  the reduced mani-
folds of the 20 first objects from COIL-100 are displayed, the three mostly fired components 
have been selected for a 3D representation .  

 
(a)                                                                                         (b) 

Fig. 5. Class separation ratio for  PCA(a) and ICA(b) object subspaces for the 20 first objects 
from COIL-100 using different dimensionalities of the manifolds (from 2 to 24 components). 
Class separation increases with the dimensionality (larger training sets) in both cases, but ICA 
clearly outperforms PCA even with a lower number of components. 
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