ROBOT GRASP SYNTHESIS AS A PATTERN RECOGNITION PROBLEM

SIMULATION ENVIRONMENT

How to install the system
Simply unzip the filé¢’code.zip”; the following folders will be created:

main: contains the four main Matlab functions that cam fon from the
command window.

functions: contains auxiliary Matlab functions.

objects: contains the objects database as Matlab .mat(8&sbjects).

results: contains temporal result files.

weka: contains the necessary Weka code.

Both Matlab and java must be installed in your catepin order to be able to run the
simulation environment.

Running a training session
Running a training session (that is, giving graspneples to the system) is simple:

1. From the Matlab command window, usi@to change to theain folder.
2. Type train_grasps([1:10]). This command will allow you to input grasp

examples for the objects 1 to 10 of our databasewall create a model of your
grasping behaviour. You can select a differento$etbjects for training if you
prefer.

For each object, the following Matlab figure wipzear:

Page 1 of 8

Such figure shows the object to be grasped andhiti@l location of the robot gripper
(the complete robot arm is shown scaled in the tavght corner). You have to move
the robot gripper to the desired grasping poinisgihe mouse:

» Left clicking on any location will displace the de: of the gripper to such
location.

* Right clicking on the blue dashed circle will r&dhe gripper fingers.

* Right clicking on the blue dashed line will openctizse the robot fingers.

The goal is to place the gripper fingers closethte desired grasping points; for
example, they could be placed like the followingufie shows:

Once the gripper fingers have been correctly plapesssing ENTER will close them,
and the two contact points will be displayed. Yoill Wwe asked to either accept the
grasp example or repeat the grasp (you must chobn@ of the upper left buttons). You
can also click on close, if you don’t want to inpubre grasp examples.

After the 10 grasp training examples are enterkd, dystem displays the following
messages:

>> train_grasps([1:10])
Training grasp for object 1...
Training grasp for object 2...
Training grasp for object 3...
Training grasp for object 4...
Training grasp for object 5...
Training grasp for object 6...
Training grasp for object 7...
Training grasp for object 8...
Training grasp for object 9...
Training grasp for object 10...
Creating full model ...

>>

Page 2 of 8

The last message indicates that the model hassueerssfully created.

Running an autonomous grasping session

Once the system has been trained, it is possiltagok whether it has learned to grasp
new objects or not. Simply typgrasp_auto([11:12], 0) and the system will grasp
autonomously objects 11 and 12 of the databaseo{oke, you can select any other set
of objects). The information that will appear omesn is the following:

1. First, the object to be grasped will appear onetréfter you click onNext
step, the contour points that the system has considexid for placing a robot
finger on them (according to the examples givertl) lvéi shown:

2. Clicking Next step twice more will display further information: theogsible
pairs of contact points reachable by the robotpgip(in green) and, among
them, the ones that the system considers validyrditg to the examples (in
pink).

Page 3 of 8

3. If you keep on clickingNext step the ideal set of two contact points will be
displayed (in blue) and the robot gripper will maevards its final location and
grasp the object.

After the grasp has been completed you can clickNemt example to continue
checking the behaviour of the system or you castk@nCloseto end the application.

Running a leave-one-out experiment

A better way of checking the behaviour of the sysie by running a leave-one-out
experiment. Give grasp training examples for aoc$etbjects (say, 6 objects) and then
check the grasp that the system chooses autonoynmouglach of these 6 objects when
the remaining 5 objects are used as training exasnpl

Just typdeave_one_out([1:6])from the command window to run the experiment with
the 6 first objects of the database (a differehb$@bjects can be chosen). After giving
all training examples to the system, the systenl stért creating partial models
(discarding one of the objects) and computing autorus grasps for such objects. This
Is the information that will be displayed on therooand window:

>> |leave_one_out([1:6])
Training grasp for object 1...
Training grasp for object 2...
Training grasp for object 3...
Training grasp for object 4...
Training grasp for object 5...
Training grasp for object 6...
Creating full model ...

Creating model discarding object 1...grasping objec t1..
Creating model discarding object 2...grasping objec t2...
Creating model discarding object 3...grasping objec t3..
Creating model discarding object 4...grasping objec ta..
Creating model discarding object 5...grasping objec t5...
Creating model discarding object 6...grasping objec t6...
>>

And the grasping results will be displayed as riigxire shows:

Page 4 of 8

1V

le

In the previous figure, the light green arrows espond to the training grasp given as
an example, and the red arrows correspond to @mpgromputed by the system using
the other 5 objects as examples. Trying with déiférgrasping behaviours will allow
you to check whether the system imitates such betessor not.

Supervised grasping

System performance can be improved by adding ugmrgision. The main idea is to
check the autonomous grasps performed by the syist@arleave-one-out experiment
and to tell the system which grasps have been meei poorly. These grasps will be
added to the database as examples of invalid gmgspehaviour (without user
supervision, invalid grasping examples are genénatedomly).

You can try user supervision by typing, for examfgave one_out_loop([1:6])Such

a command will make the system run a leave onexpegriment with the first 6 objects
of the database, similar to that of the previougige. After presenting the results on
screen, you will be prompted for the list of graips you consider inappropriate. Then,
the system will be retrained adding these new idwakamples and the results will be
presented again. Hopefully, the results will imprateration after iteration.

An example is shown next: First, we type:

>> |leave_one_out_loop([1:6])

Then, we enter grasp examples for the 6 objectgyubie graphical interface. Once the
examples are entered, the system will start pratgss

Training grasp for object 1...
Training grasp for object 2...
Training grasp for object 3...
Training grasp for object 4...
Training grasp for object 5...
Training grasp for object 6...

Page 5 of 8

Creating full model ...

Creating model discarding object 1...grasping objec tl...
Creating model discarding object 2...grasping objec t2...
Creating model discarding object 3...grasping objec t3...
Creating model discarding object 4...grasping objec t4...
Creating model discarding object 5...grasping objec t5...
Creating model discarding object 6...grasping objec t6...

PLEASE INPUT WRONG GRASPS OR '0' TO END
Wrong graps:

At this point, the grasping results are shown aedave asked to input the autonomous
grasps that we consider incorrect in this firstat®n. Next figure shows the results
obtained in this example run:

I |

[\
0bj.01 0bj.02 0bj.03

v

0bj.04 0bj.05 0bj.06

We may say that the grasp of object #01 is not Weaexpected (one of the contact
points is located on a convex area). We shouldréifeand the system will start
processing again, considering the autonomous grfasipject #01 as an invalid grasping
example:

PLEASE INPUT WRONG GRASPS OR '0' TO END

Wrong graps: 1

Autonomous grasps of figures: [01] will be consid ered wrong
graps examples

Recomputing...

Creating model discarding object 1...grasping objec tl...
Creating model discarding object 2...grasping objec t2...
Creating model discarding object 3...grasping objec t3...
Creating model discarding object 4...grasping objec t4...
Creating model discarding object 5...grasping objec t5...
Creating model discarding object 6...grasping objec t6...

PLEASE INPUT WRONG GRASPS OR '0' TO END
Wrong graps:

At this point, new results are shown and we aredsgain for the incorrect grasps.
Next figure shows the results obtained in the sddtanation:

Page 6 of 8

A |

A A
0bj.01 0bj.02 0bj.03

\/\x\

0bj.04 0bj.05 0bj.06

The grasp of object #01 is now correct, and theroginasps are also correct (please note
that they are not exactly the same grasps of teeiferation). So we may enter “0” to
end the training loop:

PLEASE INPUT WRONG GRASPS OR '0' TO END
Wrong graps: 0

No wrong examples added

>>

Usually, the number of iterations required for siblie change in the systems behaviour
is higher than 2. Feel free to experiment the systed check the results obtained.

Object database
There are 38 different objects in our databaseeBoh object, there are two files:

* A Matlab “*.mat” file containing all the object ctours in Cartesian coordinates
(x, y variables).

* A txt “*.cent” file which contains the coordinates the centre of gravity of the
object.

New objects can be added to the database justdatimg both the *.mat and *.cent
files. Next figure shows the 38 objects currentiggent in the database:

Page 7 of 8

-

-

%
I

0bj.01 0bj.02 0bj.03 obj.04 0bj.05
@ 0 W

obi.%@ 0bj.07 0bj.0 0bj.09 0bj.10
@ ||

obi.1lﬂ obi.l@ 0bj.13 obj.14 0bj.15
O | O—= |

obi.mf obi.D 0bj.18 0bj.19 0bj.20

obi.2i obi.ZZE obi.I obiI 0bj.25

X

¢
B
¢

-

0bj.26 0bj.27 0bj.28 0bj.29 0bj.30
0bj.31 0bj.32 0bj.33 0bj.34 0bj.35
0bj.3 0bj.37 0bj.38

Further information

From the Matlab command window, typelp train_grasps help grasp_autq help
leave_one_outor help leave_one_out_loopn order to find more information about
these functions; or just edit their codes (pleast free to modify them).

Page 8 of 8

